DIAGNOSTICS

ENGINE	DI–1
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–1
CUSTOMER PROBLEM ANALYSIS CHECK	DI–2
PRE-CHECK	DI–3
DIAGNOSTIC TROUBLE CODE CHART	DI-14
PARTS LOCATION	DI–18
TERMINALS OF ECU	DI–19
PROBLEM SYMPTOMS TABLE	DI–21
	DI–22
AUTOMATIC TRANSAXLE	DI–142
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–142
CUSTOMER PROBLEM ANALYSIS CHECK	DI–143
PRE-CHECK	DI–144
DIAGNOSTIC TROUBLE CODE CHART	DI–155
PARTS LOCATION	DI–157
TERMINALS OF ECU	DI–158
PROBLEM SYMPTOMS TABLE	DI–160
	DI–163
ABS & BA & TRC & VSC SYSTEM	DI-203
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–203
CUSTOMER PROBLEM ANALYSIS CHECK	DI–204
PRE-CHECK	DI–205
DIAGNOSTIC TROUBLE CODE CHART	DI–213
PARTS LOCATION	DI–216
TERMINALS OF ECU	DI–217
PROBLEM SYMPTOMS TABLE	DI-220
	DI-222
SUPPLEMENTAL RESTRAINT SYSTEM	DI-303
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI-303
CUSTOMER PROBLEM ANALYSIS CHECK	DI-304
PRE-CHECK	DI-305
DIAGNOSTIC TROUBLE CODE CHART	DI–311
PARTS LOCATION	DI–314
TERMINALS OF ECU	DI–315
PROBLEM SYMPTOMS TABLE	DI–317
	DI–318
THEFT DETERRENT SYSTEM	DI-443
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI-443
CUSTOMER PROBLEM ANALYSIS CHECK	DI-444
PRE-CHECK	DI-445

PARTS LOCATION	DI-450
TERMINALS OF ECU	DI–451
PROBLEM SYMPTOMS TABLE	DI–452
CIRCUIT INSPECTION	DI-453
CRUISE CONTROL SYSTEM	DI–472
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–472
CUSTOMER PROBLEM ANALYSIS CHECK	DI–473
PRE-CHECK	DI–474
DIAGNOSTIC TROUBLE CODE CHART	DI–479
PARTS LOCATION	DI–480
TERMINALS OF ECU	DI–481
PROBLEM SYMPTOMS TABLE	DI–483
CIRCUIT INSPECTION	DI–484
ENGINE IMMOBILISER SYSTEM	DI–520
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–520
CUSTOMER PROBLEM ANALYSIS CHECK	DI–521
PRE-CHECK	DI–522
DIAGNOSTIC TROUBLE CODE CHART	DI–525
PARTS LOCATION	DI–526
TERMINALS OF ECU	DI–527
PROBLEM SYMPTOMS TABLE	DI–528
CIRCUIT INSPECTION	DI–529
COMBINATION METER SYSTEM	DI–537
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–537
CUSTOMER PROBLEM ANALYSIS CHECK	DI–538
PROBLEM SYMPTOMS TABLE	DI–539
CIRCUIT INSPECTION	DI–541
SLIDING ROOF SYSTEM	DI–553
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–553
CUSTOMER PROBLEM ANALYSIS CHECK	DI–554
PARTS LOCATION	DI–555
TERMINALS OF ECU	DI–556
PROBLEM SYMPTOMS TABLE	DI–557
	DI–558
BODY CONTROL SYSTEM	DI–564
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI-564
CUSTOMER PROBLEM ANALYSIS CHECK	DI–565
PARTS LOCATION	DI–566
TERMINALS OF ECU	DI–567
PROBLEM SYMPTOMS TABLE	DI–570

CIRCUIT INSPECTION	DI-572
DRIVER DOOR CONTROL SYSTEM	DI–598
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–598
CUSTOMER PROBLEM ANALYSIS CHECK	DI–599
PARTS LOCATION	DI-600
TERMINALS OF ECU	DI-601
PROBLEM SYMPTOMS TABLE	DI-602
CIRCUIT INSPECTION	DI-603
PASSENGER DOOR CONTROL	
SYSTEM	DI–620
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI-620
CUSTOMER PROBLEM ANALYSIS CHECK	DI-621
PARTS LOCATION	DI-622
TERMINALS OF ECU	DI-623
PROBLEM SYMPTOMS TABLE	DI–624
	DI-625
REAR LEFT DOOR CONTROL SYSTEM	DI–642
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI-642
CUSTOMER PROBLEM ANALYSIS CHECK	DI-643
PARTS LOCATION	DI-644
TERMINALS OF ECU	DI645
PROBLEM SYMPTOMS TABLE	DI-647
	DI-648
REAR RIGHT DOOR CONTROL	
SYSTEM	DI–659
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–659
CUSTOMER PROBLEM ANALYSIS CHECK	DI-660
PARTS LOCATION	DI-661
TERMINALS OF ECU	DI-662
PROBLEM SYMPTOMS TABLE	DI-664
	DI-665
MULTIPLEX COMMUNICATION SYSTEM	DI–676
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–676
CUSTOMER PROBLEM ANALYSIS CHECK	DI–677
PRE-CHECK	DI–678
DIAGNOSTIC TROUBLE CODE CHART	DI-683
PARTS LOCATION	DI–685
TERMINALS OF ECU	DI-686
CIRCUIT INSPECTION	DI–688

LEXUS NAVIGATION SYSTEM	DI-726
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI–726
CUSTOMER PROBLEM ANALYSIS CHECK	DI-727
PRE-CHECK	DI–728
DIAGNOSTIC TROUBLE CODE CHART	DI–745
PARTS LOCATION	DI–751
TERMINALS OF ECU	DI–752
PROBLEM SYMPTOMS TABLE	DI–756
	DI-757
AIR CONDITIONING SYSTEM	DI-803
HOW TO PROCEED WITH	
TROUBLESHOOTING	DI-803
CUSTOMER PROBLEM ANALYSIS CHECK	DI-804
PRE-CHECK	DI-805
DIAGNOSTIC TROUBLE CODE CHART	DI-809
TERMINALS OF ECU	DI-811
PROBLEM SYMPTOMS TABLE	DI-812
	DI–814

ENGINE HOW TO PROCEED WITH TROUBLESHOOTING

When using hand-held tester, troubleshooting in accordance with the procedure on the following page.

DI4DW-13

DI4DX-02

CUSTOMER PROBLEM ANALYSIS CHECK

ENG		LSY	STEM Check Sh	eet Inspe Name	ector's		
Cus	tomer's Name				Model and Model Year		
Driv	er's Name				Frame No.		
Data Bro	a Vehicle ught in				Engine Model		
Lice	ense No.				Odometer Reading		km miles
	Engine does not Start		ngine does not crank	< 🗆 No	o initial combustion	□ No complete combust	ion
	Difficult to Start		ngine cranks slowly ther				
ptoms	Poor Idling		correct first idle	□ Idling rpm is a ther	bnormal 🛛 High (rpm) 🛛 Low (rpm)
em Sym	Deor Drivability	Пн	→sitation □ Ba nocking □ Ot	ack fire ther	☐ Muffler explosion (afte	∋r–fire) □ Surging	
Proble	Engine Stall		oon after starting iter accelerator peda nifting from N to D	☐ After acce Il released ☐ Other _	erator pedal depressed		
	□ Others						
Data	as Problem surred						
Pro	blem Frequency		□ Constant □ □ Other	l Sometimes (times per day/mo	onth) 🛛 Once only	
	Weather		□ Fine □ Cl	oudy 🛛 Rain	ny 🗆 Snowy 🗆] Various/Other	
en	Outdoor Temperature		🗆 Hot 🗆 Wa	arm 🗆 Coc	D Cold (approx.	°F/°C)	
ition Wh em Occi	Place		□ Highway □ □ Rough road	Suburbs	Inner City) Uphill 🛛 Downhill	
Condi	Engine Temp.			arming up] After Warming up	Any temp. Other	
Engine Operation Image: Starting indicating indicatin					□ Idling □ Racing .ion □ Deceleration		
Con (CH	dition of check e K ENG)	ngine	warning light	Remains on	□ Sometimes lig	ht up □ Does not ligI	nt up
		No (P	ormal mode recheck)	Normal	☐ Malfunction co ☐ Freezed frame	ode(s) (code) ∋ data ()	
DTC Inspection Check Mode Check Mode DTC Inspection Check Mode DTC Inspection Malfunction code(s) (code) Freezed frame data ()			ode(s) (code) ∋ data ()				

PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Description
 - When troubleshooting Euro–OBD vehicles, the only difference from the usual troubleshooting procedure is that you connect to the vehicle the OBD scan tool complying with ISO 15031–4 or hand– held tester, and read off various data output from the vehicle's engine ECU.
 - Euro–OBD regulations require that the vehicle's on–board computer lights up the check engine warning light on the instrument panel when the computer detects a malfunction in the emission control system / components or in the power train control components which affect vehicle emissions, or a malfunction in the computer. In addition to the check engine warning light lighting up when a malfunction is detected, the applicable Diagnostic Trouble Codes (DTC) prescribed by ISO 15031–4 are recorded in the engine ECU memory (See page DI–14). If the malfunction does not reoccur in 3 consecutive trips, the check engine warning light goes off automatically but the DTCs remain recorded in the engine ECU memory.
 - When DTC P3190, P3191 are detected and the remain of the fuel is little, the computer judges the cause as a fuel shortage, and after the next trip, when the supply of fuel is confirmed, it turns off MIL, but the memory of DTC still remains.
 - To check the DTCs, connect the OBD scan tool or hand-held tester to Data Link Connector 3 (DLC3) on the vehicle. The OBD scan tool or hand-held tester also enables you to erase the DTCs and check freezed frame data and various forms of engine data. (For operating instructions, see the OBD scan tool's instruction book.)

DTCs include ISO controlled codes and manufacturer controlled codes. ISO controlled codes must be set as prescribed by the ISO, while manufacturer controlled codes can be set freely by the manufacturer within the prescribed limits. (See DTC chart on page DI–14)

DI7O5-02

The diagnosis system operates in normal mode during normal vehicle use. It also has a check mode for technicians to simulate malfunction symptoms and troubleshoot. Most DTCs use 2 trip detection logic* to prevent erroneous detection, and ensure thorough malfunction detection. By switching the engine ECU to check mode when troubleshooting, the technician can cause the check engine warning light to light up for a malfunction that is only detected once or momentarily. (hand-held tester only) (See step 2)

*2 trip detection logic: When a malfunction is 1st detected, the malfunction is temporarily stored in the engine ECU memory. (1st trip) If the same malfunction is detected again during the second drive test, this 2nd detection causes the check engine warning light to light up. (2nd trip)

(However, the IG switch must be turned OFF between the 1st trip and the 2nd trip.)

Freeze frame data:

Freeze frame data records the engine condition when a misfire (DTCs P0300 – P0306) or fuel trim malfunction (DTCs P0171, P0172, P0174, P0175) or other malfunction (first malfunction only), is detected.

Because freeze frame data records the engine conditions (fuel system, calculated load, engine coolant temperature, fuel trim, engine speed, vehicle speed, etc.) when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Priorities for troubleshooting:

If troubleshooting priorities for multiple DTCs are given in the applicable DTC chart, these should be followed.

If no instructions are given troubleshoot DTCs according to the following priorities.

- DTCs other than fuel trim malfunction (DTCs P0171, P0172, P0174, P0175) and misfire (DTCs P0300 – P0306).
- (2) Fuel trim malfunction (DTCs P0171, P0172, P0174, P0175).
- (3) Misfire (DTCs P0300 P0306).

(b) Check the DLC3.

The vehicle's engine ECU uses the ISO 9141–2 communication protocol. The terminal arrangement of DLC3 complies with ISO 15031–03 and matches the ISO 9141–2 format.

Terminal No.	Connection / Voltage or Resistance	Condition
7	Bus \oplus Line / Pulse generation	Duringtransmission
4	Chassis Ground / \leftrightarrow Body Ground 1 Ω or less	Always
16	Battery Positive / \leftrightarrow Body Ground 9 – 14 V	Always

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of the OBD scan tool or hand-held tester to DLC3, turned the ignition switch ON and operated the hand-held tester, there is a problem on the vehicle side or tool side.

- If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- If communication is still not possible is when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Debarment listed in the tool,s instruction manual.

2. INSPECT DIAGNOSIS (Normal Mode)

- (a) Check the check engine warning light.
 - (1) The check engine warning (CHK ENG) comes on when the ignition switch is turned ON and the engine is not running.

HINT:

If the check engine warning (CHK ENG) does not light up, troubleshoot the combination meter.

(2) When the engine is started, the check engine warning light should go off. If the lamp remains on, the diagnosis system has detected a malfunction or abnormality in the system

(b) Check the DTC, using hand-held tester.

NOTICE:

Hand-held tester only:

When the diagnosis system is switched from normal mode to check (test) mode, it erases all DTCs and freezed frame data recorded in normal mode. So before switching modes, always check the DTCs and freezed frame data, and note them down.

- (2) Connect the hand-held tester to DLC3.
- (3) Turn the ignition switch ON and switch the handheld tester main switch ON.
- (4) Use the hand-held tester to check the DTCs and freezed frame data; note them down. (For operating instructions, see the hand-held tester,s instruction book.)
- (5) See page DI–14 to confirm the details of the DTCs.
- (c) Clear the DTC.

The following actions will erase the DTCs and freezed frame data.

- Operating the hand-held tester to erase the codes. (See the hand-held tester's instruction book for operating instructions.)
- Disconnecting the battery terminals or EFI fuse.

NOTICE:

If the hand-held tester switches the engine ECU from normal mode to check mode or vice-versa, or if the ignition switch is turned from ON to ACC or OFF during check mode, the DTCs and freezed frame data will be erased.

3. INSPECT DIAGNOSIS (Check (Test) Mode)

HINT:

Hand-held tester only:

Compared to the normal mode, the check mode has an increased sensitivity to detect malfunctions.

Furthermore, the same diagnostic items which are detected in the normal mode can also be detected in the check (test) mode. (a) Check the DTC.

- (1) Initial conditions
 - Battery positive voltage 11V or more.
 - Throttle valve fully closed.
 - Transmission in "P" or "N" position.
 - Air conditioning switched OFF.
- (2) Turn ignition switch OFF.
- (3) Prepare the hand-held tester.
- (4) Connect the hand-held tester to DLC3 on the at the lower left of the instrument panel.
- (5) Turn the ignition switch ON and switch the push the hand-held tester ON.

- (7) Start the engine. (The check engine warning (CHK ENG) light goes out after the engine start.)
- (8) Simulate the conditions of the malfunction described by the customer.

NOTICE:

Leave the ignition switch ON until you have checked the DTC, etc.

(9) After simulating the malfunction conditions, use the hand-held tester diagnosis selector to check the DTCs and freezed frame data, etc.

HINT:

Take care not to turn the ignition switch OFF. Turning the ignition switch OFF switches the diagnosis system from check (test) mode to normal mode. so all DTCs, etc. are erased.

- (10) After checking the DTCs, inspect the applicable circuit.
- (b) Using break-out-box and hand-held tester
 - (1) Hook up the break–out–box and hand–held tester to the vehicle.
 - (2) Read the engine ECU input/output values following the prompts on the tester screen.

HINT:

Hand-held tester has a "Snapshot" function. This records the measured values and is effective in the diagnosis of intermittent problems. Please refer to the hand-held tester/break-out-box operator,s manual for further details.

4. FAIL-SAFE CHART

Break-Out-Box

Interface Box

Engine ECU

If any of the following codes is recorded, the engine ECU enters fail-safe mode.

N09348

Vehicle Harness

DTC No.	Fail–SafeOperation	Fail-Safe Deactivation Conditions
P0100	Ignition timing fixed at 10° BTDC	Returned to normal condition
P0110	Intake air temp. is fixed at 20°C (68°F)	Returned to normal condition
P0115	Water temp. is fixed at 80°(176°F)	Returned to normal condition
P0120	VTA is fixed at 0°	The following condition must be repeated at least 2 times consecutively When closed throttle position switch is ON: $0.1 V \leq VTA$ and $0.95 V$
P0325 P0300	Max. timing retardation	IG switch OFF
P0500	High RPM for cut is prohibited ISC control prohibited	Returned to normal condition
P1300 P1305 P1310 P1315	Fuel cut	Feturned to normal condition

5. CHECK FOR INTERMITTENT PROBLEMS

HAND-HELD TESTER only:

By putting the vehicle's engine ECU in check (test) mode, 1 trip detection logic is possible instead of 2 trip detection logic and sensitivity to detect open circuits is increased. This makes it easier to detect intermittent problems.

- (1) Clear the DTC (See step 3.).
- (2) Set the check (test) mode (See step 3.).
- (3) Perform a simulation test (See page IN–22).
- (4) Check the connector and terminal (See page IN-32).
- (5) Check the visual check and contact pressure (See page IN-32).
- (6) Handle the connector (See page IN–32).

6. BASIC INSPECTION

When the malfunction code is not confirmed in the DTC check, troubleshooting should be carried out in the order for all possible circuits to be considered as the causes of the problems. In many cases, by carrying out the basic engine check shown in the following flow chart, the location causing the problem can be found quickly and efficiently. Therefore, use of this check is essential in engine troubleshooting.

οκ

Proceed to problem symptoms table on page DI–21.

- Remove the spark plug. (b)
- Install the spark plug to the ignition coil, and connect the ignition coil connector. (c)
- (d) Disconnect the injector connector.
- (e) Be sure to ground the screw of the spark plug securely.

CHECK:

Check if spark occurs while engine is being cranked.

NOTICE:

To prevent excess fuel being injected from the injectors during this test, don't crank the engine for more than 5 – 10 seconds at a time.

> NG shoot.

Proceed to page IG-1 and continue to trouble-

	ок	
_		_

Proceed to problem symptoms table on page DI-21.

7. ENGINE OPERATING CONDITION NOTICE:

The values given below for "Normal Condition" are representative values, so a vehicle may still be normal even if its value from those listed here. So do not decide whether a part is faulty or not solely according to the "Normal Condition" here.

Hand-heldtester display	MeasurementItem	Normal Condition*
FUEL SYS #1	Fuel System Bank 1 OPEN: Air–fuel ratio feedback stopped CLOSED: Air–fuel ratio feedback operating	Idling after warming up: CLOSED
FUEL SYS #2	Fuel System Bank 2 OPEN: Air–fuel ratio feedback stopped CLOSED: Air–fuel ratio feedback operating	Idling after warming up: CLOSED
CALC LOAD	Calculator Load: Current intake air volume as a proportion of max. intake air volume	Idling: 13.1 – 18.7 % Racing without load (2,500rpm): 11.7 – 17.3 %
COOLANT TEMP	Engine Coolant Temp. Sensor Value	After warming up: $80 - 95^{\circ}$ C (176 - 203°F)
SHORT FT #1	Short-term Fuel Trim Bank 1	0 ± 20%
LONG FT #1	Long-term Fuel Trim Bank 1	0 ± 20%
SHORT FT #2	Short-term Fuel Trim Bank 2	0 ± 20%
LONG FT #2	Long-term Fuel Trim Bank 2	0 ± 20 %
ENGINE SPD	Engine Speed	Idling: 650 – 750 rpm
VEHICLE SPD	Vehicle Speed	Vehicle stopped: 0 km/h (0 mph)
IGN ADVANCE	Ignition Advance: Ignition Timing of Cylinder No.1	Idling: BTDC 8 – 12°
INTAKE AIR	Intake Air Temp. Sensor Value	Equivalent to Ambient Temp.
MAF	Air Flow Rate Through Mass Air Flow Meter	Idling: 3.3 – 4.7 gm/sec. Racing without load (2,500 rpm): 10.4 – 15.4 gm/sec.
THROTTLE POS	Voltage Output of Throttle Position Sensor Calculated as a percentage: 0 V \rightarrow 0 %, 5 V \rightarrow 100 %	Throttle valve fully closed: 7 – 11 % Throttle valve fully open: 65 – 75 %
O2S B1 S2	Voltage Output of Oxygen Sensor Bank 1, Sensor 2	Driving 50 km/h (31 mph): 0.05 – 0.95 V
A/FS B1 S1	Voltage Output of A/F Sensor Bank 1 Sensor 1	Idling: 2.8 – 3.8 V
A/FS B2 S1	Voltage Output of A/F Sensor Bank 2 Sensor 1	Idling: 2.8 – 3.8 V
A/FFT B1 S1	A/F Sensor Fuel Trim Bank 1, Sensor 1 (Same as SHORT FT #1)	0 ± 20 %
A/FFT B2 S1	A/F Sensor Fuel Trim Bank 2, Sensor 1 (Same as SHORT FT #1)	0 ± 20 %
MISFIRE RPM	Engine RPM for first misfire range	Misfire 0: 0 rpm
MISFIRE LOAD	Engine load for first misfire range	Misfire 0: 0 g/r
INJECTOR	Fuel injection time for cylinder No.1	Idling: 1.6 – 2.9 ms
MIL ON RUN DIST	Distance since activation of check engine warn- ing light	When there is no DTC: 0 km (0 mile)
IAC DUTY RATIO	Intake Air Control Valve Duty Ratio Opening ratio rotary solenoid type IAC valve	Idling: 27 – 47 %
STARTER SIG	Starter Signal	Cranking: ON
CTP SIG	Closed Throttle Position Signal	Throttle fully closed: ON
A/C SIG	A/C Switch Signal	A/C ON: ON
PNP SW	Park/Neutral Position Switch Signal	P or N position: ON
ELCTRCL LOAD SIG	Electrical Load Signal	Defogger switch ON: ON
STOP LIGHT SW	Stop Light Switch Signal	Stop light switch ON: ON

LEXUS RX300 (RM785E)

PS OIL PRESS SW	Power Steering Oil Pressure Switch Signal	Turn steering wheel: ON
FC IDL	Fuel Cut Idle: Fuel cut when throttle valve fully closed, during deceleration	Fuel cut operating: ON
FC TAU	Fuel Cut TAU: Fuel cut during very light load	Fuel cut operating: ON
CYL#1 – CYL#6	Abnormal revolution variation for each cylinder	0 %
IGNITION	Total number of ignition for every 1,000 revolu- tions	0-3,000
INTAKE CTRL VSV	Intake Air Control Valve VSV Signal	VSV operating: ON
A/C CUT SIG	A/C Cut Signal	A/C S/W OFF: ON
FUEL PUMP	Fuel Pump Signal	Idling: ON
EVAP (PURGE) VSV	EVAP VSV Signal	VSV operating: Above 30 %
VAPOR PRESS VSV	Vapor Pressure VSV Signal	VSV operating: ON
TOTAL FT B1	Total Fuel Trim Bank 1: Average value for fuel trim system of bank 1	Idling: 0.8 – 1.2
TOTAL FT B2	Total Fuel Trim Bank 1: Average value for fuel trim system of bank 2	Idling: 0.8 – 1.2

*: If no conditions are specifically stated for "Idling", it means the shift lever is at P position, the A/C switch is OFF and all accessory switches are OFF.

DIAGNOSTIC TROUBLE CODE CHART

SAE CONTROLLED

HINT:

Parameters listed in the chart may not be exactly the same as your reading due to the type of instrument or other factors.

DI12C-22

If a malfunction code is displayed during the DTC check in check mode, check the circuit for that code listed in the table below. For details of each code, turn to the page referred to under the "See page" for the respective "DTC No." in the DTC chart.

DTC No. (See Page)	Detection Item	Trouble Area	CHK ENG* ¹	Memory
P0100 (DI–22)	Mass Air Flow Circuit Malfunc- tion	 Open or short in air flow meter circuit Air flow meter Engine ECU 	0	0
P0101 (DI–26)	Mass Air Flow Circuit Range/ PerformanceProblem	• Air flow meter	0	0
P0110 (DI–26)	Intake Air Temp. Circuit Malfunction	 Open or short in intake air temp. sensor circuit Intake air temp. sensor (built into air flow meter) Engine ECU 	0	0
P0115 (DI–31)	Engine Coolant Temp. Circuit Malfunction	 Open or short in water temp. sensor circuit Water temp. sensor Engine ECU 	0	0
P0116 (DI–35)	Engine Coolant Temp. Circuit Range/PerformanceProbrem	Engine coolant temp. sensor Cooling system	0	0
P0120 (DI–36)	Throttle/Pedal Position Sensor/ Switch "A" Circuit Malfunction	 Open or short in throttle position sensor circuit Throttle position sensor Engine ECU 	0	0
P0121 (DI–41)	Throttle/Pedal Position Sensor/ Switch "A" Circuit Range/Perfor- mance Problem	Throttle position sensor	0	0
P0125 (DI–42)	Insufficient Coolant Temp. for Closed Loop Fuel Control	 Air induction system Fuel pressure Injector injection Gas leakage on exhaust system Open or short in heated oxygen sensor (bank 1 sensor 1) circuit Oxygen sensor (bank 1 sensor 1) 	0	0
P0136 ^{*2} (DI–48)	Oxygen Sensor Circuit Malfunc- tion (Bank 1 Sensor 2)	 Open or short in heater circuit of oxygen sensor Oxygen sensor 	0	0
P0141 (DI–50)	Oxygen Sensor Heater Circuit Malfunction (Bank 1 Sensor 2)	• Same as DTC No. P0135	0	0
P0171 ^{*2} (DI–52)	Fuel Trim System too Lean (A/F Lean Malfunction, Bank 1)	 Air intake (hose loose) Fuel line pressure Injector blockage Oxygen sensor malfunction Air flow meter Water temp. sensor 	0	0
P0172 ^{*2} (DI–52)	System too Rich (A/F Rich Malfunction Bank 1)	 Fuel line pressure Injector leak, blockage Heated oxygen sensor malfunction Mass air flow meter Engine coolant temp. sensor Gas leakage on exhaust system 	0	0

P0174 ^{*2} (DI–52)	System too Lean (A/F Lean Malfunction Bank 2)	Same as DTC No. P0171	0	0
P0175 ^{*2} (DI–52)	System too Rich (A/F Rich Malfunction Bank 2)	Same as DTC No. P0172	0	0
P0300 ^{*2} (DI–57)	Random/MultipleCylinder Misfire Detected			
P0301 ^{*2} (DI–57)	Cylinder 1 Misfire Detected	Ignition system Injector		
P0302 ^{*2} (DI–57)	Cylinder 2 Misfire Detected	Fuel pressure Compression pressure		
P0303 ^{*2} (DI–57)	Cylinder 3 Misfire Detected	Valve clearance Valve timing Air flow meter	0	0
P0304 ^{*2} (DI–57)	Cylinder 4 Misfire Detected	Water temp. sensor Open or short in engine wire		
P0305 ^{*2} (DI–57)	Cylinder 5 Misfire Detected	Connector connection Engine ECU		
P0306 ^{*2} (DI–57)	Cylinder 6 Misfire Detected			
P0325 (DI–63)	Knock Sensor 1 Circuit Malfunction	 Open or short in knock sensor 1 circuit Knock sensor 1 (looseness) Engine ECU 	0	0
P0330 (DI–63)	Knock Sensor 2 Circuit Malfunction (Bank 2)	 Open or short in knock sensor 2 circuit Knock sensor 2 (looseness) Engine ECU 	0	0
P0335 (DI–67)	Crankshaft Position Sensor "A" Circuit Malfunction	 Open or short in crankshaft position sensor circuit Crankshaft position sensor Signal plate Engine ECU 	0	0
P0340 (DI–69)	Camshaft Position Sensor Circuit Malfunction	 Open or short in camshaft position sensor circuit Camshaft position sensor Engine ECU 	0	0
P0420 ^{*2} (DI–71)	Catalyst System Efficiency Below Threshould (Bank 1)	 Gas leakage on exhaust system Oxygen sensor Three–way catalytic converter 	0	0
P0443 (DI–74)	Evaporative Emission Control System Purge Control Vent ControlMalfunction	Open or short in VSV circuit for EVAP VSV for EVAP Engine ECU	0	0
P0500 (DI–77)	Vehicle Speed Sensor Malfunction	Combinationmeter Open or short in No.1 vehicle speed sensor circuit Engine ECU No.1 vehicle speed sensor	0	0
P0505 (DI–80)	Idle Control System Malfunction	 Open or short in ISC valve circuit ISC valve is stuck or closed Open or short in A/C signal circuit Air induction system Engine ECU 	0	0
P1130 ^{*2} (DI–85)	A/F Sensor Circuit Range/Perfor- mance Malfunction (Bank 1 Sen- sor 1)	 Open or short in A/F sensor circuit A/F sensor Air induction system Fuel pressure Injector Engine ECM 	0	0

DIAGNOSTICS – ENGINE

P1133 ^{*2} (DI–90)	A/F Sensor Circuit Response Malfunction (Bank 1 Sensor 1)	 Open or short in A/F sensor circuit A/F sensor Air induction system Fuel pressure Injector Engine ECM 	0	0
P1135 (DI–94)	A/F Sensor Heater Circuit Mal- function (Bank 1 Sensor 1)	 Open or short in heater circuit of A/F sensor A/F sensor heater Engine ECM 	0	0
P1150 ^{*2} (DI–85)	A/F Sensor Circuit Range/Perfor- mance Malfunction (Bank 2 Sen- sor 1)	• Same as DTC No. P1130	0	0
P1153 ^{*2} (DI–90)	A/F Sensor Circuit Response Malfunction (Bank 2 Sensor 1)	• Same as DTC No. P1133	0	0
P1155 (DI–94)	A/F Sensor Heater Circuit Mal- function (Bank 2 Sensor 1)	• Same as DTC No. P1135	0	0
P1300 (DI–96)	Igniter Circuit Malfunction (No.1)	 Open or short in IGF and IGT1 circuit from ignition coil with igniter to Engine ECU No.1 ignition coil with igniter Engine ECU 	0	0
P1305 (DI–96)	Igniter Circuit Malfunction (No.2)	 Open or short in IGF or IGT2 circuit from No.2 ignition coil with igniter to engine ECU No.2 ignition coil with igniter Engine ECU 	0	0
P1310 (DI–96)	Igniter Circuit Malfunction (No.3)	 Open or short in IGF and IGT3 circuit from ignition coil with igniter to Engine ECU No.3 ignition coil with igniter Engine ECU 	0	0
P1315 (DI–96)	Igniter Circuit Malfunction (No.4)	 Open or short in IGF or IGT4 circuit from No.4 ignition coil with igniter to engine ECU No.4 ignition coil with igniter Engine ECU 	0	0
P1320/14 (DI–96)	Igniter Circuit Malfunction (No.5)	 Ignition system Open or short in IGF or IGT5 circuit from igniter to engine ECU Igniter Engine ECU 	0	0
P1325/14 (DI–96)	Igniter Circuit Malfunction (No.6)	 Ignition system Open or short in IGF or IGT6 circuit from igniter to engine ECU Igniter Engine ECU 	0	0
P1335/13 (DI–101)	Crankshaft Position Sensor Cir- cuit Malfunction (During engine running)	 Open or short in crankshaft position sensor circuit Crankshaft position sensor Crankshaft timing pulley Engine ECU 	-	0
P1346 (DI–102)	VVT Sensor Circuit Range/PerformanceProblem (Bank 1)	 Mechanical system (Jumping teeth of timing belt, belt stretched) Engine ECU 	0	0
P1349 (DI–103)	VVT System Malfunction (Bank 1)	 Valve timing OCV VVT controller assembly Engine ECU 	0	0
P1350 (DI–109)	VVT Sensor/Camshaft position Sensor Circuit Malfunction (Bank 2)	 Open or short in VVT sensor (camshaft position Sensor) circuit VVT sensor (camshaft position Sensor) Engine ECU 	0	0

DIAGNOSTICS – ENGINE

P1351 (DI–102)	VVT Sensor/Camshaft position Sensor Circuit Range/Perfor- mance Problem (Bank 2)	• Same as DTC No. P1346	0	0
P1354 (DI–103)	VVT System Malfunction (Bank 2)	• Same as DTC No. P1349	0	0
P1520 (DI–111)	Stop Light Switch Signal Mal- function	 Short in stop light switch signal circuit Stop light switch Engine ECU 	0	0
P1600 (DI–113)	Engine ECU BATT Malfunction	Open in back up power source circuit Engine ECU	0	0
P1645 (DI–115)	Body ECU Malfunction	Body ECU A/C ECU Communication bus	_	0
P1651 (DI–116)	VSV for ACIS Circuit Malfunction (European spec.)	Open or short in VSV circuit for ACIS VSV for ACIS Engine ECU	0	0
P1656 (DI–120)	OCV Circuit Malfunction (Bank 1)	Open or short in OCV circuit		
P1663 (DI–120)	OCV Circuit Malfunction (Bank 2)	Engine ECM	0	
P1666 (DI–116)	VSV for AICS circuit Malfunction	Open or short in VSV circuit VSV Engine ECM	0	0
P1780 (DI–123)	Park/Neutral Position Switch Malfunction	Short in park/neutral position switch circuit Park/neutral position switch Engine ECM	0	0

*1: - Check engine warning light does not light up. O Check engine warning light lights up.
 *2: Europe only

DI68L-13

TERMINALS OF ECU

E7	E6	E5	E9	E8
9 8 7 6 5 4 3 2 1 21 20 19 18 17 16 15 14 13 12 11 10 31 30 29 28 27 26 25 24 23 22	7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 24 23 22 21 20 19 18 17	6 5 4 3 2 1 12 11 10 9 8 7 17 16 15 14 13	9 8 7 6 5 4 3 2 1 19 18 17 16 15 14 13 12 11 10 28 27 26 25 24 23 22 21 20	7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 22 21 20 19 18 17 16

Symbols (Terminal No.)	Wiring Color	Condition	STD Voltage (V)
BATT (E9–1) – E1 (E7–17)	$B-Y \leftrightarrow BR$	Always	9 – 14
+B (E9–16) – E1 (E7–17)	$B-R \leftrightarrow BR$	IG switch ON	9 – 14
VC (E7–2) – E2 (E7–18)	$Y – B \leftrightarrow BR$	IG switch ON	4.5 - 5.5
		IG switch ON, Throttle valve fully closed	0.3 – 1.0
V IA1 (E7–23) – E2 (E7– 18)	$L-VV \leftrightarrow BR$	IG switch ON, Throttle valve fully open	2.7 – 5.2
VG (E7–10) – E2G (E7–19)	$Y – R \leftrightarrow G – B$	Idling, A/C switch OFF	1.1 – 1.5
THA (E7–22) – E2 (E7–18)	$L-B \leftrightarrow BR$	Idling, Intake air temp. 20°C (68°F)	0.5 - 3.4
THW (E7–14) – E2 (E7–18)	$GW\leftrightarrowBR$	Idling, Engine coolant temp. 80°C (176°F)	0.2 - 1.0
STA (E9–7) – E1 (E7–17)	$B \leftrightarrow BR$	Cranking	6.0 or more
		IG switch ON	9 – 14
#10 (E7–5) – E01 (E8–21)	$W \leftrightarrow W - B$	Idling	Pulse generation (See page DI–57)
		IG switch ON	9-14
#20 (E7–6) – E01 (E8–21)	$Y \leftrightarrow W\text{-}B$	Idling	Pulse generation (See page DI–57)
	$B \leftrightarrow W\text{-}B$	IG switch ON	9 – 14
#30 (E8–1) – E01 (E8–21)		Idling	Pulse generation (See page DI–57)
		IG switch ON	9 – 14
#40 (E8–2) – E01 (E8–21)	$L \leftrightarrow W - B$	Idling	Pulse generation (See page DI–57)
		IG switch ON	9 – 14
#50 (E8–3) – E01 (E8–21)	$R \leftrightarrow WB$	Idling	Pulse generation (See page DI–57)
		IG switch ON	9 – 14
#60 (E8–4) – E01 (E8–21)	$G \leftrightarrow WB$	Idling	Pulse generation (See page DI–57)
OC1+(E8-6) - OC1-(E8-5)	$Y – B \leftrightarrow G – W$		Pulsegeneration
OC2+(E8-29)-OC2-(E8-18)	$G{-}R \leftrightarrow G{-}Y$	IG switch ON	(See page DI-127)
IGT1 (E8–11) – E1 (E7–17)	$B-Y \leftrightarrow BR$		
IGT2 (E8–12) – E1 (E7–17)	$L–R\leftrightarrow BR$		
IGT3 (E8–13) – E1 (E7–17)	$Y – G \leftrightarrow BR$		
IGT4 (E8–14) – E1 (E7–17)	$L-Y \leftrightarrow BR$	Idling	Pulse generation
IGT5 (E8–15) – E1 (E7–17)	$Y \leftrightarrow BR$		
IGT6 (E8–16) – E1 (E7–17)	$G-B \leftrightarrow BR$		
VV2 (E8–22) – E1 (E7–17)	$L \leftrightarrow BR$		

DI7O6-02

DI-19

_A02016

		IG switch ON	4.5 - 5.5
IGF (E8–25) – E1 (E7–17)	$B \leftrightarrow BR$		Pulsegeneration
		Idling	(See page DI–96)
VV1+(E8–10)	$O \land W$	Idling	Pulsegeneration
– NE– (E8–24)	0 \ \ W		(See page DI–67)
NE+ (E8–16) – NE– (E8–24)	$B \mathop{\leftrightarrow} W$	Idling	Pulse generation
ACIS (F8–17) – F01 (F8–21)	$R-Y \leftrightarrow W-B$		(000 page 21 01)
ACI1 (E7–15) – E01 (E8–21)	LG ↔ W–B	IG switch ON	9–14
		IG switch ON	9-14
FC (E9–3) – E01 (E8–21)	$L – Y \leftrightarrow W – B$	Idling	0-3.0
EVP1 (E7–7) – E01 (E8–21)	$W-L \leftrightarrow W-B$	IG switch ON	9 – 14
RSO (E8–26) – E01 (E8–21)	$Y-R \leftrightarrow W-B$	IG switch ON, Disconnect E17 connector from engine ECU	9 – 14
			Pulsegeneration
OXS (E10–8) – E1 (E7–17)	$W \leftrightarrow BR$	Maintain engine speed at 2,500 rpm for 3 min. after warming up	(See page DI-71)
HTS (E10–9) – E03 (E8–30)	B ↔ W–B	Idling	9 – 14
		IG switch ON	Below 3.0
KNKR (E8–27) – E1 (E7–17)	$W \leftrightarrow BR$	Idling	Pulsegeneration
KNKL (E8–28) – E1 (E7–17)	$B \leftrightarrow BR$		(See page DI–63)
NSW (E10–20) – E1 (E7–17)	$B-W \leftrightarrow BR$	IG switch ON, Other shift position in P, N	9-14
		IG switch ON, Shift position in P, N	0-3.0
SPD (E10–22) – E1 (E7–17)	$V-W \leftrightarrow BR$	IG switch ON,.Rotate driving wheel slowly	0-5
TC (E10–5) – E1 (E7–17)	$P-B \leftrightarrow BR$	IG switch ON	9–14
W (E9–6) – E01 (E8–21)	$Y – G \leftrightarrow W – B$	IG switch ON	Below 3.0
PS (E7–9) – E1 (E7–17)	$B-Y \leftrightarrow BR$	IG switch ON	9 – 14
CE (E10_26) _ E1 (E7_17)		Electric cooling fan is operating on high speed	9 – 14
		Electric cooling fan is operating on low speed or OFF	0-2
TACH (E10–27) – E1 (E7–17)	$O \leftrightarrow BR$	Idling	Pulsegeneration
SIL (E9–4) – E1 (E7–17)	$W \leftrightarrow BR$	Duringtransmission	Pulsegeneration
STP (E9-15) - E1 (E7-17)	G–O ↔ BR	IG switch ON, Brake pedal depressed	7.5 – 14
		IG switch ON, Brake pedal released	Below 1.5
AFR+ (E7–11)– E1 (E7–17)	$R \leftrightarrow BR$	IG switch ON	3.3
AFL+ (E7–12) – E1 (E7–17)	$L \leftrightarrow BR$		
AFR-(E7-20)-E1(E7-17)	$G \leftrightarrow BR$	IG switch ON	3.0
AFL- (E7-21)- E1 (E7-17)	$B-W \leftrightarrow BR$		
HAFR (E7–3) – E04 (E7–1)	$L \leftrightarrow W-B$	IG switch ON	Below 3.0
		Idling (warm up engine)	Pulsegeneration
HAFL (E7–4) – E05 (E7–8)	$G \leftrightarrow W – B$	IG switch ON	Below 3.0
		Idling (warm up engine)	Pulsegeneration
KSW (E10–23) – E1 (E7–17)	$L \leftrightarrow BR$	At time of inserting the key	Below 1.5
- () ()		In condition without the key inserted	4 – 5
RXCK (E10–19) – E1 (E7–17)	$P \leftrightarrow BR$	At time of inserting the key	Pulsegeneration
CODE (E10-28) - E1 (E7-17)	$V \leftrightarrow BR$	At time of inserting the key	Pulse generation
IGSW (E9–2) – E1 (E7–17)	$B – O \leftrightarrow BR$	IG switch ON	9–14
TXCT (E10–18) – E1 (E7–17)	$GR \leftrightarrow BR$	At time of inserting the key	Pulse
IMLO (E9–22) – E1 (E7–17)	$L \leftrightarrow BR$	In condition without the key inserted	Pulse
MREL (E9-8) - E1 (E7-17)	$B – W \leftrightarrow BR$	IG switch ON	9-14

LEXUS RX300 (RM785E)

PROBLEM SYMPTOMS TABLE

Symptom	Suspect Area	Seepage
Engine does not crank (Does not start)	1. Starter and starter relay	ST-2 ST-20
	2. Neutral start switch circuit	DI-140
	1. Engine immobiliser system	BE–2
No initial combustion (Does not start)	2. ECU power source circuit	DI-124
	3. Fuel pump control circuit	DI-128
No complete combustion (Does not start)	1. Fuel pump control circuit	DI–128
Linden en en la constitue (D'Wendit (content))	1. Fuel pump control circuit	DI–128
Under normal condition (Difficult to start)	2. Compression	EM–3
Cold engine (Difficult to start)	1. Fuel pump control circuit	DI–128
Hot engine (Difficult to start)	1. Fuel pump control circuit	DI–128
	1. A/C signal circuit (Compressor circuit)	-
High engine idle speed (Poor idling)	2. ECU power source circuit	DI–124
	1. A/C signal circuit (Compressor circuit)	_
Low engine idle speed (Poor idling)	2. Fuel pump control circuit	DI–128
	1. Compression	EM–3
Rough idling (Poor idling)	2. Fuel pump control circuit	DI–128
	1. ECU power source circuit	DI-124
Hunting (Poor idling)	2. Fuel pump control circuit	DI–128
Hesitation/Poor acceleration (Poor driveability)	1. Fuel pump control circuit	DI–128
Surging (Poor driveability)	1. Fuel pump control circuit	DI-128
	1. Engine immobiliser system	BE–2
Soon atter starting (Engine stall)	2. Fuel pump control circuit	DI–128
During A/C operation (Engine stall)	1. A/C signal circuit (Compressor circuit)	-
	2. Engine ECU	IN-22

LEXUS RX300 (RM785E)

DI1IA-24

DI707-02

CIRCUIT INSPECTION

DTC	P0100	Mass Air Flow Circuit Malfunction
DTC	P0100	Mass Air Flow Circuit Malfunction

CIRCUIT DESCRIPTION

The air flow meter uses a platinum hot wire. The hot wire air flow meter consists of a platinum hot wire, temparature sensor and a control circuit installed in a plastic housing. The hot wire air flow meter works on the principle that the hot wire and temparature sensor located in the intake air bypass of the housing detect any changes in the intake air temperature.

The hot wire is maintained at the set temperature by controlling the current flow through the hot wire. This current flow is then measured as the output voltage of the air flow meter.

The circuit is constructed so that the platinum hot wire and temparature sensor provide a bridge circuit, with the power transistor controlled so that the potential of A and B remains equal to maintain the set temperature.

DTC No.	DTC Detecting Condition	Trouble Area
P0100	Open or short in air flow meter circuit with more than 3 sec. engine speed less than 4,000 rpm	 Open or short in air flow meter circuit Air flow meter Engine ECU

HINT:

After confirming DTC P0100 use the hand-held tester to confirm the air flow ratio from CURRENT DATA.

Air Flow Value (gm/sec.)	Malfunction
Approx. 0.0	Air flow meter power source circuit openVG circuit open or short
271.0 or more	• EVG circuit open

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Connect hand-held tester, and read value of air flow rate.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Start the engine.

CHECK:

Read air flow rate on the hand-held tester.

RESULT:

	Туре І	Туре II
Air flow rata (gm/sec.)	0.0	271.0 or more
	Type I Go to step 2	
	Type II Go to step 5	

DI-24

LEXUS RX300 (RM785E)

Replace air flow meter.

5

Check continuity between terminal E2G of engine ECU connector and body ground.

DTC	P0101	Mass Air Flow Circuit Range/Performance Problem
-----	-------	--

DI7O8-02

CIRCUIT DESCRIPTION

Refer to DTC P0100 on page DI-22.

DTC No.	DTC Detecting Condition	Trouble Area	
P0101	After engine is warmed up, conditions (1), (2) and (3) continue with more than 10 sec. engine speed 1,500 rpm or less: (2 trip detection logic) 1. Throttle valve fully closed 2. Air flow meter output > 2.2 V 3. THW > 70 °C (158 °F)	• Air flow meter	
Conditions (1) and (2) continue with more than 10 sec. engine speed 2,100 rpm or more: (2 trip detection logic) 1. VTA ≥ 0.63 V 2. Air flow meter output < 1.06 V			

INSPECTION PROCEDURE

HINT:

1

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Are there any other codes (besides DTC P0101) being output?

DI7O9-02

DTC

P0110

Intake Air Temp. Circuit Malfunction

CIRCUIT DESCRIPTION

The intake air temp. sensor is built into the air flow meter and senses the intake air temperature.

A thermistor built in the sensor changes the resistance value according to the intake air temperature.

The lower the intake air temperature, the greater the thermistor resistance value, and the higher the intake air temperature, the lower the thermistor resistance value (See fig. 1).

The intake air temp. sensor is connected to the engine ECU (See below). The 5 V power source voltage in the engine ECU is applied to the intake air temp. sensor from the terminal THA (THAR) via resistor R.

That is, the resistor R and the intake air temp. sensor are connected in series. When the resistance value of the intake air temp. sensor changes in accordance with changes in the intake air temperature, the potential at terminal THA (THAR) also changes. Based on this signal, the engine ECU increases the fuel injection volume to improve driveability during cold engine operation.

DTC No.	DTC Detecting Condition	Trouble Area
P0110	Open or short in intake air temp. sensor circuit	 Open or short in intake air temp. sensor circuit Intake air temp. sensor (inside air flow meter) Engine ECU

HINT:

After confirming DTC P0110 use the hand-held tester to confirm the intake air temperature from CURRENT DATA.

TemperatureDisplayed	Malfunction	
-40°C (-40°F)	Open circuit	
140°C (284°F) or more	Short circuit	

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTC P0110, P0115, P0120 are output simultaneously, E2 (Sensor Ground) may be open.
- Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1

Connect hand-held tester, and read value of intake air temperature.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.

CHECK:

Read temperature value on the hand-held tester.

OK:

Same as actual intake air temperature

HINT:

- If there is open circuit, hand-held tester indicates -40°C (-40°F).
- If there is short circuit, hand-held tester indicates 140°C (284°F) or more.

NG

–40°C (–40°F)...Go to step 2 140°C (284°F) or more...Go to step 4.

OK	

Check for intermittent problems (See page DI–3).

Confirm good connection at engine ECU. If OK, check and replace engine ECU. (See page IN–32)

DI-30

DI7OA-02

DTC P0115 Water Temp. Circuit Malfunction

CIRCUIT DESCRIPTION

A thermistor built into the water temp. sensor changes the resistance value according to the water temperature.

The structure of the sensor and connection to the engine ECU is the same as in the DTC P0110 shown on page DI–27.

DTC No.	DTC Detecting Condition	Trouble Area
P0115	Open or short in water temp. sensor circuit	 Open or short in water temp. sensor circuit Water temp. sensor Engine ECU

HINT:

After confirming DTC P0115 use the hand-held tester to confirm the water temperature from CURRENT DATA.

TemperatureDisplayed	Malfunction	
-40°C (-40°F)	Open circuit	
140C° (284°F) or more	Short circuit	

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTC P0110, P0115, P0120 are output simultaneously, E2 (Sensor Ground) may be open.
- Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
 - 1

Connect hand-held tester, and read value of water temperature.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and switch the hand-held tester main switch ON.

CHECK:

Read temperature value on the hand-held tester.

OK:

Same as actual water temperature

HINT:

- If there is open circuit, Hand-held tester indicates -40°C (-40°F).
- If there is short circuit, Hand-held tester indicates 140°C (284°F) or more.

ΟΚ

Check for intermittent problems (See page DI–3).

DIAGNOSTICS - ENGINE

DI6UZ-04

DTC P0116 Water Temp. Circuit Range/Performance Problem

CIRCUIT DESCRIPTION

Refer to DTC P0115 on page DI-31.

DTC No.	DTC Detecting Condition	Trouble Area	
If THW < -6.7 °C (20°F), 20 min. or more after starting engine, engine coolant temp. sensor value is 35°C (95°F) or less (2 trip detection logic)			
P0116	If THW ≥ -6.7 °C (20 °F) and < 10 °C (50 °F), 5 min. or more after starting engine, engine coolant temp. sensor value is 35 °C (95 °F) or less (2 trip detection logic)	 Engine coolant temp. sensor Cooling system 	
	If THW \geq 10°C (50°F), 2 min. or more after starting engine, engine coolant temp. sensor value is 35°C (95°F) or less (2 trip detection logic)		

INSPECTION PROCEDURE

HINT:

- If DTC P0115 and P0116 are output simultaneously, water temp. sensor circuit may be open. Perform troubleshooting of DTC P0115 first.
- Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

NO	
2	Check thermostat (See page CO–10).
	NG Replace thermostat.
ОК	
Repla	ce engine coolant temp. sensor.

DTC

P0120

Throttle Position Sensor Circuit Malfunction

CIRCUIT DESCRIPTION

The throttle position sensor is mounted in the throttle body and detects the throttle valve opening angle. When the throttle valve is fully closed, a voltage of approx. 0.7 V is applied to terminal VTA of the engine ECU. The voltage applied to the terminals VTA of the engine ECU increases in proportion to the opening angle of the throttle valve and becomes approx. 2.7 - 5.2 when the throttle valve is fully opened. The engine ECU judges the vehicle driving conditions from these signals input from terminals VTA and uses them as one of the conditions for deciding the air-fuel ratio correction, power increase correction and fuel-cut control etc.

DTC No.	DTC Detecting Condition	Trouble Area
P0120	Condition (a) or (b) continues: (a) VTA < 0.1 V	 Open or short in throttle position sensor circuit Throttle position sensor
	(b) VTA > 4.9 V	Engine ECU

HINT:

After confirming DTC P0120, use the hand-held tester to confirm the throttle valve opening percentage and closed throttle position switch condition.

Throttle valv expresse	Trouble Area	
Throttle valve fully closed	Throttle valve fully open	
0 %	0%	VC line open VTA line open or short
Approx. 100%	Approx. 100%	E2 line open

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTCs P0110, P0115 and P0120 are output simultaneously, E2 (sensor ground) may be open.
- Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions
 when the malfunction is detected. When troubleshooting it is useful for determining whether the vehicle
 was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at
 the time of the malfunction.

When using hand-held tester:

1

Connect hand-held tester, read throttle valve opening percentage.

PREPARATION: (a) Connect the

- (a) Connect the hand–held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.

CHECK:

Read the throttle valve opening percentage.

OK:

Throttle valve	Throttle valve opening position ex- pressed as percentage
Fullyopen	Approx. 75 %
Fully closed	Approx. 10 %

Check for intermittent problems (See page DI–3).

NG

2 Check voltage between terminal 1 of wire harness side connector and body ground.

PREPARATION:

- (a) Remove the engine ECU with connector still connected (See page FI–70).
- (b) Turn the ignition switch ON.

CHECK:

Measure voltage between terminal 1 (VC) of wire harness side connector and body ground.

OK:

ок

\checkmark

3

Check throttle position sensor.

PREPARATION:

Disconnect the throttle position sensor connector.

CHECK:

Measure voltage between terminals 1, 3 and 2 of throttle position sensor.

OK:

Terminals	Throttle valve	Resistance
1 – 2	-	2.5 – 5.9 kΩ
3-2	Fully closed	0.2 – 6.3 kΩ
3-2	Fully open	$2.0-10.2$ k Ω

ОК

 \rangle Replace throttle position sensor.

Check voltage between terminals VTA1 and E2 of engine ECU.

4

ON VTA1 (+) E2 (-)

PREPARATION:

- (a) Remove the engine ECU with connector still connected (See page FI–70).
- (b) Turn the ignition switch ON.

CHECK:

Measure voltage between terminals VTA1 and E2 of the engine ECU connector.

OK:

Throttle valve	Voltage
Fully closed	0.3 – 1.0 V
Fully open	2.7 – 5.2 V

Check and replace engine ECU (See page	¢
IN–32).	

OK

Check for open and short circuit in harness and connector between engine ECU and throttle position sensor (VTA line) (See page IN–32).

Check for open in harness and connector between engine ECU and sensor (VC line) (See page IN-32).

When not using hand-held tester:

1

Check voltage between terminals VTA1 and E2 of engine ECU

PREPARATION:

- (a) Remove the engine ECU with connector still connected (See page FI–70).
- (b) Turn the ignition switch ON.

CHECK:

Measure voltage between terminals VTA1 and E2 of the engine ECU connector.

OK:

Throttle valve	Voltage
Fully closed	0.3 – 1.0 V
Fullyopen	2.7 – 5.2 V

NG

Check and replace engine ECU (See page IN–32).

OK

Check for open and short in harness and connector between engine ECU and throttle position sensor (VTA line) (See page IN–32).

2 Check voltage between terminals VC and E2 of engine ECU connector.			
ON VC (+) E2 (-) (a) Remove the engine ECU with connector still of (b) Turn the ignition switch ON. CHECK: Measure voltage between terminals VC and E2 of t ECU connector. OK: Voltage: 4.5 – 5.5 V			
	NG Check and replace engine ECU (See page IN–32).		
ОК			

tween engine ECU and sensor (VC line) (See page IN-32).

LEXUS RX300 (RM785E)

DTC	P0121	Throttle/Pedal Position Sensor/Switch "A" Circuit Range/Performance Problem
-----	-------	--

CIRCUIT DESCRIPTION

Refer to DTC P0120 on page DI-36.

DTC No.	DTC Detecting Condition	Trouble Area
P0121	While vehicle speed drops from 30 km/h (19 mph) or more to 0 km/h (0 mph), output value of throttle position sensor is out of applicable range. (2 trip detection logic)	Throttle position sensorEngine ECU

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Replace throttle body (See page FI–33).

DI1LI-10

DTC	P0125	Insufficient Coolant Temp. for Closed Loop Fuel Control
-----	-------	--

DI7J3-03

CIRCUIT DESCRIPTION

To obtain a high purification rate for the CO, HC and NOx components of the exhaust gas, a three–way catalytic converter is used. For the most efficient use of the three–way catalytic converter, the air–fuel ratio must be precisely controlled so that it is always close to the stoichiometric air–fuel ratio.

The A/F sensor has the characteristic that provides output voltage* approximately proportional to the existing air–fuel ratio. The A/F sensor output voltage* is used to provide feedback for the engine ECU to control the air–fuel ratio.

By the A/F sensor output, the engine ECU can determine the deviation amount from the stoichiometric airfuel ratio and control the proper injection time immediately. If the A/F sensor is malfunctioning, the engine ECU is unable to perform accurate air-fuel ratio control.

The A/F sensor is equipped with a heater which heats the zirconia element. The heater is controlled by the engine ECU. When the intake air volume is low (the temp. of the exhaust gas is low), current flows to the heater to heat the sensor for accurate oxygen concentration detection.

*: The voltage value changes at the inside of the engine ECU only.

DTC No.	DTC Detecting Condition	Trouble Area
P0125	 After engine is warmed up, A/F sensor output* does not change when conditions (a), (b) and (c) continue for at least 1.5 min. *: Output value changes at inside of engine ECU only. (a) Engine speed: 1,500 rpm or more (b) Vehicle speed: 40 ~ 100 km/h (25 ~ 62 mph) (c) Throttle valve does not fully closed (d) After starting engine ≥ 140 sec 	 Fuel system Injector Ignition system Gas leakage on exhaust system Open or short in A/F sensor circuit (bank 1, 2 sensor 1) A/F sensors (bank 1, 2 sensor 1) Engine ECU

HINT:

- After confirming DTC P0125, use a hand-held tester to confirm voltage output of heated oxygen sensors (bank 1, 2 sensor 1) from CURRENT DATA.
- The engine ECU controls the voltage of AFL+, AFR+ and AFL-, AFR- terminals of engine ECU to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without a hand-held tester.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using a hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1

Are there any other codes (besides DTC P0125) being output ?

NO

2 Connect hand-held tester and read value for voltage output of A/F sensors (bank 1, 2 sensor 1).

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Warm up the A/F sensors (bank 1, 2 sensor 1) with the engine at 2,500 rpm for approx. 90 sec.

CHECK:

Read voltage value of A/F sensors (bank 1, 2 sensor 1) on the screen of hand-held tester when you perform all the following conditions.

HINT:

The voltage of AFL+, AFR+ terminal of the engine ECU is fixed to 3.3 V and the AFL–, AFR– terminal to 3.0 V. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AFL+, AFR+/AFL–, AFR–) of the engine ECU.

OK:

Condition	A/F Sensor Voltage value
Engineidling	
Engineidling	• Not remains at 3.3. V
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close	 Not remains at 3.8 V or more Not remains at 2.8 V or less

HINT:

- During fuel enrichment, there is a case that the output voltage of A/F sensors (bank 1, 2 sensor 1) is below 2.8 V, it is normal.
- During fuel cut, there is a case that the output voltage of A/F sensors (bank 1, 2 sensor 1) is above 3.8 V, it is normal.
- If output voltage of A/F sensors (bank 1, 2 sensor 1) remains at 3.30 V even after performing all the above conditions, A/F sensors (bank 1, 2 sensor 1) circuit may be open.
- If output voltage of A/F sensor remains at 3.8 V or more, or 2.8 V or less even after performing all the above conditions, A/F sensors (bank 1, 2 sensor 1) circuit may be short.

DI-46

Go	

|--|

Check and replace engine ECU (See page IN–32).

NO

DI-47

DTC	P0136	Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)
-----	-------	--

DI680-11

CIRCUIT DESCRIPTION

Refer to DTC P0125 on page DI-42.

DTC No.	DTC Detecting Condition	Trouble Area
P0136	Voltage output of heated oxygen sensor remains at 0.45 V or more or 0.55 V or less when vehicle is driven at 100 km/h (62 mph) or more after engine is warmed up (2 trip detection logic)	 Open or short in heated oxygen sensor circuit Oxygen sensor

HINT:

Sensor 2 refers to the sensor farther away from the engine body.

WIRING DIAGRAM

Refer to DTC P0125 on page DI-42.

CONFIRMATION DRIVING PATTERN

- (a) Connect the hand-held tester to the DLC3.
- (b) Switch the hand-held tester from the Normal Mode to the Check (Test) Mode (See page DI-3).
- (c) Start the engine and let the engine idle for 60 seconds or more.
- (d) Drive the vehicle at 30 km/h (19 mph) or more for 40 seconds or more.
- (e) Let the engine idle for 10 seconds or more.
- (f) Preform steps (d) to (e) 9 times.

HINT:

If a malfunction exists, the CHK ENG warning light will be indicated on the multi information display during step (f).

NOTICE:

If the conditions in this test are not strictly followed, detection of the malfunction will not be possible. If you do not have a hand-held tester, turn the ignition switch OFF after performing steps (c) to (f), then perform steps (c) to (f) again.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

OK:

Oxygen sensor output voltage: Alternates from 0.4 V or less to 0.5 V or more.

NG	

Replace oxygen sensor.

DI2S8-15

DTC	P0141	Oxygen Sensor Heater Circuit Malfunction (Bank 1 Sensor 2)
-----	-------	---

CIRCUIT DESCRIPTION

Refer to DTC P0125 on page DI-42.

DTC No.	DTC Detecting Condition	Trouble Area
Dod 44	When the heater operates, heater current exceeds 2 A	• Open or short in heater circuit of oxygen sensor
P0141	Heater current of 0.2 A or less when the heater operates	Oxygen sensor heater Engine ECU

WIRING DIAGRAM

Refer to DTC P0125 on page DI-42.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DI84B-01

DTC	P0171	System too Lean (Fuel Trim) (Bank 1)
DTC	P0172	System too Rich (Fuel Trim) (Bank 1)
DTC	P0174	System too Lean (Fuel Trim) (Bank 2)

DTC	P0175	System too Rich (Fuel Trim) (Bank 2)
-----	-------	--------------------------------------

CIRCUIT DESCRIPTION

Fuel trim refers to the feedback compensation value compared against the basic injection time. Fuel trim includes short-term fuel trim and long-term fuel trim.

Short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at its ideal theoretical value.

The signal from the A/F sensor is approximately proportional to the existing air-fuel ratio, and engine ECU comparing it with the ideal theoretical value, the engine ECU reduces fuel volume immediately if the air-fuel ratio is rich and increases fuel volume if it is lean.

Long-term fuel trim compensates the deviation from the central value of the short-term fuel trim stored up by each engine tolerance, and the deviation from the central value due to the passage of time and changes of using environment.

If both the short-term fuel trim and long-term fuel trim exceed a certain value, it is detected as a malfunction and the check engine warning light lights up.

DTC No.	DTC Detecting Condition	Trouble Area
P0171 P0174	When air fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on RICH side (2 trip detection logic)	 Gas leakage on exhaust system Air intake (hose loose) Fuel line pressure Injector blockage Mass air flow meter Engine coolant temp. sensor A/F sensors (bank 1, 2 sensor 1)
P0172 P0175	When air fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on LEAN side (2 trip detection logic)	 Gas leakage on exhaust system Fuel line pressure Injector leak, blockage Mass air flow meter Engine coolant temp. sensor A/F sensors (bank 1, 2 sensor 1)

HINT:

- When DTC P0171 or P0174 is recorded, the actual air-fuel ratio is on the lean side. When DTC P0172 or P0175 is recorded, the actual air-fuel ratio is on the rich side.
- If the vehicle runs out of fuel, the air-fuel ratio is lean and DTC P0171 or P0174 is recorded. The check engine warning light then comes on.
- If the total of the short-term fuel trim value and long-term fuel trim value is within ± 35 % (80°C (176°F) or more), the system is functioning normally.
- The A/F sensors (bank 1, 2 sensor 1) output voltage and the short-term fuel trim value can be read using the hand-held tester.
- The engine ECU controls the voltage of AFL+, AFR+ and AFL-, AFR- terminals of the engine ECU to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without hand-held tester.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

3 Check air flow meter and water temp. sensor (See pages FI–30 and FI–63).

Repair or replace.

NG

ОК

OK

DI-54

Connect the hand-held tester to the DLC3. (a)

Warm up the A/F sensors (bank1, 2 sensor1) with the engine speed at 2,500 rpm for approx. 90 sec. (b) CHECK:

Read voltage value of A/F sensors (bank1, 2 sensor1) on the screen of the hand-held tester when you perform all the following conditions.

HINT:

The voltage of AFL+, AFR+ terminal of engine ECU is fixed to 3.3 V and AFL-, AFR- terminal to 3.0 V. Therefore, it is impossible to check the A/F sensors (bank1, 2 sensor1) output voltage at the terminals (AFL+, AFR+ / AFL-, AFR-) of the engine ECU.

OK:

Condition	A/F Sensor Voltage value
Engineidling	
Engineracing	Not remain at 3.30 V Not remain at 3.8 V or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25mph) or more, and operate throttle valve open and close	Not remain at 2.8 V or less

HINT:

- During fuel enrichment, there is a case that the output voltage of A/F sensors (bank1, 2 sensor1) is below 2.8 V, it is normal.
- During fuel cut, there is a case that the output voltage of A/F sensors (bank1, 2 sensor1) is above 3.8 V, it is normal.
- If the output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.30 V even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be open.
- If the output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.8 V or more, or 2.8 V or less even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be short.

NG

8 Check for open and short in harness and connector between engine ECU and A/F sensors (bank1, 2 sensor1) (See page IN–32).

NG

Repair or replace harness or connector.

οκ

Replace A/F sensors (bank1, 2 sensor1).

9	Perform confirmation driving pattern (See page DI–85).

Go

DI-56

		D112T-13
DTC	P0300	Random/Multiple Cylinder Misfire Detected
DTC	P0301	Cylinder 1 Misfire Detected
DTC	P0302	Cylinder 2 Misfire Detected
	-	
DTC	P0303	Cylinder 3 Misfire Detected
	-	
DTC	P0304	Cylinder 4 Misfire Detected
DTC	P0305	Cylinder 5 Misfire Detected

DTC	P0306	Cylinder 6 Misfire Detected
-----	-------	-----------------------------

CIRCUIT DESCRIPTION

Misfire: The engine ECU uses the crankshaft position sensor and camshaft position sensor to monitor changes in the crankshaft rotation for each cylinder.

The engine ECU counts the number of times the engine speed change rate indicates that misfire has occurred. And when the misfire rate equals or exceeds the count indicating that the engine condition has deteriorated, the check engine warning light lights up.

If the misfire rate is high enough and the driving conditions will cause catalyst overheating, the check engine warning light blinks when misfiring occurs.

DTC No.	DTC Detecting Condition	Trouble Area
P0300	Misfiring of random cylinders is detected during any particular 200 or 1,000 revolutions	Ignition system Injector
P0301 P0302	For any particular 200 revolutions for engine, misfiring is de- tected which can cause catalyst overheating (This causes MIL to blink) (2 trip detection logic)	Fuel pressure Compression pressure Valve clearance Valve timing
P0303 P0304 P0305 P0306	For any particular 1,000 revolutions of engine, misfiring is de- tected which causes a deterioration in emissions (2 trip detection logic)	 Air flow meter Water temp. sensor Open or short in engine wire Connector connection Engine ECU

HINT:

When the 2 or more codes for a misfiring cylinder are recorded repeatedly but no random misfire code is recorded, it indicates that the misfires were detected and recorded at different times.

CONFIRMATION DRIVING PATTERN

- (a) Connect the hand-held tester.
- (b) Record DTC and the freeze frame data.
- (c) Use the hand-held tester to set to Check Mode (See page DI-3).
- (d) Drive the vehicle several times with the engine speed, load and its surrounding range shown with EN-GINE SPD, CALC LOAD in the freeze frame data or MISFIRE RPM, MISFIRE LOAD in the data list.

If you have no hand-held tester, turn the ignition switch OFF after the symptom is simulated the first time. Then repeat the simulation process again.

HINT:

In order to memorize DTC of misfire, it is necessary to drive around MISFIRE RPM, MISFIRE LOAD in the data list for the following period of time.

Engine Speed	Time
Idling	3 minutes 30 seconds or more
1000 rpm	3 minutes or more
2000 rpm	1 minutes 30 seconds or more
3000 rpm	1 minutes or more

- (e) Check whether there is misfire or not by monitoring DTC and the freeze frame data. After that, record them.
- (f) Turn ignition switch OFF and least 5 seconds.

INSPECTION PROCEDURE

HINT:

- If is the case that DTC besides misfire is memorized simultaneously, first perform the troubleshooting for them.
- Read freeze frame data using hand-held tester. Because freeze frame data records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the vehicle is brought to the workshop and the misfire is not occurred, misfire can be confirmed by reproducing the condition or freeze frame data. Also, after finishing the repair, confirm that there is no misfire. (See the confirmation driving pattern)
- When either of SHORT FT #1, LONG FT #1, SHORT FT #2 or LONG FT #2 in the freeze frame data is besides the range of ±20 %, there is a possibility that the air-fuel ratio is inclining either to RICH (-20 % or less) or LEAN (+20 % or more).
- When COOLANT TEMP in the freeze frame data is less than 80°C (176°F), there is a possibility or misfire only during warning up.
- In the case that misfire cannot be reproduced, the reason may be because of the driving with lack or fuel, the use of improper fuel, a stain of ignition plug, and etc.

3

Check voltage of engine ECU terminals for injector of failed cylinder.

- Remove the engine ECU with connector still connected (See page FI-70).
- Turn the ignition switch ON.

Measure voltage between applicable terminal of the engine ECU connector and body ground.

Voltage: 9 – 14 V

Reference: INSPECTION USING OSCILLOSCOPE

With the engine idling, measure between terminals #10 – #40 and E01 of the engine ECU connector. HINT:

The correct waveforms are as shown.

NG

		DI4EA-14
DTC	P0325	Knock Sensor 1 Circuit Malfunction (Bank 1)

DTC	P0330	Knock Sensor 2 Circuit Malfunction (bank 2)
-----	-------	---

CIRCUIT DESCRIPTION

Each of knock sensor is fitted to the right bank and left bank of the cylinder block to detect engine knocking. This sensor contains a piezoelectric element which generates a voltage when it becomes deformed, which occurs when the cylinder block vibrates due to knocking. If engine knocking occurs, ignition timing is retarded to suppress it.

DTC No.	DTC Detecting Condition	Trouble Area
P0325	No knock sensor 1 signal to engine ECU with engine speed between 2,000 rpm and 5,600 rpm	 Open or short in knock sensor 1 circuit Knock sensor 1 (looseness) Engine ECU
P0330	No knock sensor 2 signal to engine ECU with engine speed between 2,000 rpm and 5,600 rpm	 Open or short in knock sensor 2 circuit Knock sensor 2 (looseness) Engine ECU

If the ECM detects the above diagnosis conditions, it operates the fail–safe function in which the corrective retard angle value is set to the maximum value.

WIRING DIAGRAM

INSPECTION PROCEDURE

EA1

Female

Connector Connector

EA1

HINT:

• DTC P0325 is for the right bank knock sensor circuit.

Engine ECU

KNKR

<u></u>,

KNKL

• #

A00304

- DTC P0330 is for the left bank knock sensor circuit.
- Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

Knock Sensor

-LIF¢

+ 100 P

FI7050 S06024 S06025 Male

Connect OBD scan tool or hand-held tester, and check knock sensor circuit.

- (a) Connect the OBD scan tool or hand-held tester to the DLC3.
- (b) Disconnect the wire to wire connector EA1.
- (c) Connect the terminals of the disconnected EA1 male connector and EA1 female as follows.

Male connector \leftrightarrow Female connector
Terminal 1 \leftrightarrow Terminal 2
Terminal 2 \leftrightarrow Terminal 1

- (d) Turn the ignition switch ON and push the OBD scan tool or hand-held tester main switch ON.
- (e) After the engine is warmed up, perform quick racing to 4,000 rpm three times.

CHECK:

Check the DTC.

RESULT:

Туре І	DTC same as when vehicle brought in P0325 \rightarrow P0325 or P0330 \rightarrow P0330
Туре II	DTC different to when vehicle brought in P0325 \rightarrow P0330 or P0330 \rightarrow P0325

Check and replace engine ECU (See page IN–32).

	3	Check for open and short in harness and connector between EA1 connector and knock sensor (See page IN–32).	
HIN [.]	T: If [DTC P0325 has changed to P0330, check the knock sensor circuit on the right bank side.	
•	lf [DTC P0330 has changed to P0325, check the knock sensor circuit on the left bank side.	
		NG Repair or replace harness or connector.	

	<u> </u>
ок	
Replace knock sensor.	

DTC	P0335	Camshaft Position Sensor Circuit Malfunction
-----	-------	---

CIRCUIT DESCRIPTION

Crankshaft position sensor (NE signal) consist of a signal plate and pick up coil.

The NE signal plate has 34 teeth and is mounted on the crankshaft. The NE signal sensor generates 34 signals of every engine revolution. The engine ECU detects the standard crankshaft angle based on the G2 signals, and the actual crankshaft angle the engine speed by the NE signals.

DTC No.	DTC Detecting Condition	Trouble Area
P0335	No crankshaft position sensor signal to engine ECU during cranking	 Open or short in crankshaft position sensor circuit Crankshaft position sensor Starter
	Open in NE– circuit	Engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- Read freed frame data using hand-held tester. Because freeze frame records the engine conditions
 when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle
 was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time
 of the malfunction.
- Perform troubleshooting of DTC P0335 first. If no trouble is found, troubleshoot the following mechanical system.

DI4EB-14

DTC	P0340	Camshaft Position Sensor Circuit Malfunction
-----	-------	---

CIRCUIT DESCRIPTION

Camshaft position sensor (G(VV) signal) consist of a signal plate and pick up coil. The G(VV) signal plate has one tooth on its outer circumference and is mounted on the camshaft.

When the camshafts rotate, the protrusion on the signal plate and the air gap on the pick up coil change, causing fluctuations in the magnetic field and generating an electromotive force in the pick up coil.

The NE signal plate has 34 teeth and is mounted on the crankshaft. The NE signal sensor generates 34 signals for every engine revolution. The engine ECU detects the standard crankshaft angle based on the G2+ signals and the actual crankshaft angle and the engine speed by the NE signals.

DTC No.	DTC Detecting Condition	Trouble Area
P0340	No camshaft position sensor signal to engine ECU during cranking	 Open or short in camshaft position sensor circuit Camshaft position sensor
1 0040	Open in NE– circuit	Starter Engine ECU

WIRING DIAGRAM

Refer to DTC P0335 on page DI-67.

INSPECTION PROCEDURE

HINT:

Read freed frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DTC	

P0420

Catalyst System Efficiency Below Threshold

CIRCUIT DESCRIPTION

The engine ECU observes the waveform of the oxygen sensor located behind the catalyst to determine whether the catalyst is performance has deteriorated.

If the catalyst is performance functioning normally, the waveform of the oxygen sensor located behind the catalyst switches back and forth between rich and lean much more slowly.

When the waveform of the oxygen sensor located behind the catalyst alternates flatteringly between rich and lean, it indicates that catalyst performance has deteriorated.

DTC No.	DTC Detecting Condition	Trouble Area
P0420	After the engine and the catalyst are warmed up, and while the vehicle is driven within the set vehicle and engine speed range, the waveforms of the heated oxygen sensors (bank 1 sensor 2) have the same amplitude (2 trip detection logic)	 Three–way catalytic converter Open or short in oxygen sensor (bank 1 sensor 2) circuit Oxygen sensor (bank 1 sensor 2) Open or short in A/F sensor (bank 1, 2 sensor 1) circuit A/F sensor (bank 1, 2 sensor 1)

DI84D-01

CONFIRMATION ENGINE RACING PATTERN

- (a) Connect the hand-held tester to the DLC3.
- (b) Start engine and warm it up with all accessories switched OFF until water temp. is stable.
- (c) Race the engine at 2,500 3,000 rpm for about 3 min.
- (d) When racing the engine at 3,000 rpm for 2 sec. and 2,000 rpm for 2 sec. alternately, check the waveform of the oxygen sensor (bank 1 sensor 2).

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

DTC	P0443	Evaporative Emission Control System Purge Control Vent Control Malfunction
-----	-------	---

CIRCUIT DESCRIPTION

To reduce HC emissions, evaporated fuel from the fuel tank is routed through the charcoal canister to the intake manifold for combustion in the cylinders.

The engine ECU changes the duty signal to the VSV for the EVAP so that the intake quantity of HC emissions is appropriate for the driving conditions (engine load, engine speed, vehicle speed, etc.) after the engine is wamed up.

DTC No.	DTC Detecting Condition	Trouble Area
P0443	Proper response to engine ECU command does not occur	 Open or short in VSV circuit for EVAP VSV for EVAP Engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

Hand-held tester:

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

Check and replace engine ECU (See page IN-32).

OBD scan tool (excluding hand-held tester):

ОК

2 Check voltage between terminal EVP1 of engine ECU connector and body ground.

PREPARATION:

- (a) Remove the engine ECU with connector still connected (See page FI–70).
- (b) Turn the ignition switch ON.

CHECK:

Measure the voltage between terminal EVP1 of the engine ECU connector and body ground.

OK:

Voltage: 9 – 14 V

Check for open and short in harness and connector between EFI main relay and engine ECU (See page IN–32).

ΟΚ

Check and replace engine ECU (See page IN-32).

```
DTC
```

P0500

Vehicle Speed Sensor Malfunction

CIRCUIT DESCRIPTION

The vehicle speed sensor outputs a 4-pulse signal for every revolution of the rotor shaft, which is rotated by the transmission output shaft via the driven gear. After this signal is converted into a more precise rectangular waveform by the waveform shaping circuit inside the combination meter, it is then transmitted to the engine ECU. The engine ECU determines the vehicle speed based on the frequency of these pulse signals.

DTC No.	DTC Detecting Condition	Trouble Area
P0500	No vehicle speed sensor signal to engine ECU under condi- tions (a) and (b): (2 trip detection logic)	Open or short in vehicle speed sensor circuit Vehicle speed sensor
	(a) Neutral start switch is OFF	
	(b) Vehicle is being driven	• Engine ECU

WIRING DIAGRAM

DI4ED-13

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

CHECK:

Drive the vehicle and check if the operation of the speedometer in the combination meter is normal. HINT:

The vehicle speed sensor is operating normally if the speedometer display is normal.

OK

2

Check for short in harness and connector between terminal SPD of engine ECU and body ground.

PREPARATION:

(a) Remove the glove compartment (See page FI–70).

(b) Disconnect the E14 connector of engine ECU.

CHECK:

Check continuity between terminal SPD of engine ECU connector and body ground.

OK:

No continuity (1 M Ω or higher)

NG

 \rangle Repair or replace harness or connector.

OK

3

OK

4 Check for open in harness and connector between junction connector and combination meter (See page IN–32).
--

Repair or replace harness or connector.

ΟΚ

Check and replace engine ECU (See page IN-32).

DTC

P0505

Idle Control System Malfunction

CIRCUIT DESCRIPTION

The rotary solenoid type ISC valve is located in front of the intake air chamber and intake air bypassing the throttle valve is directed to the ISC valve through a passage.

In this way the intake air volume bypassing the throttle valve is regulated, controlling the engine speed.

The engine ECU operates only the ISC valve to perform idle–up and provide feedback for the target idling speed.

DTC No.	DTC Detecting Condition	Trouble Area Trouble Area
P0505	Idle speed continues to differ greatly from the target speed (2 trip detection logic)	 ISC valve is stuck or closed Open or short in ISC valve circuit Open or short in A/C switch circuit Air induction system Engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using a hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Hand-held tester:

1	Check operation of the ISC valve.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the active test mode on the hand-held tester.

CHECK:

Check the engine speed when the ISC valve operated by the hand-held tester.

OK:

Engine speed is increased and decreased in response to change of ISC duty ratio.

ок

Check for intermittent problems (See page DI–3).

NG

2 Check voltage between terminals RSO of engine ECU connector and body ground.

OK

Check for open and short in harness and connector between engine room J/B and ISC valve and engine ECU (See page IN–32).

Go to step 3.

OK

Check for open and short in harness and connector between engine room J/B and ISC valve and engine ECU (See page IN–32).

DI-84

DTC	P1130	A/F Sensor Circuit Range/Performance Mal- function (Bank 1 Sensor 1)
-----	-------	---

DTC	P1150	A/F Sensor Circuit Range/Performance Mal- function (Bank 2 Sensor 1)
-----	-------	---

CIRCUIT DESCRIPTION

Refer to DTC P0125 on page DI-42.

DTC No.	DTC Detecting Condition	Trouble Area
P1130 P1150	Voltage output* of A/F sensor remains at 3.8 V or more, or 2.8 V or less, during engine running after the engine is warmed up (2 trip detection logic) *: Output value changes at inside of engine ECU only Voltage output* of A/F sensor does not change from 3.30 V, during engine running after the engine is warmed up (2 trip detection logic) *: Output value changes at the inside of engine ECU only Open or short in A/F sensor circuit (2 trip detection logic)	 Open or short in A/F sensor circuit A/F sensor Air induction system Fuel pressure Injector Engine ECU

HINT:

- After confirming DTC P1130, use the OBD scan tool or hand-held tester to confirm voltage output of A/F sensor (AFS B1 S1/O2S B1 S1) from the CURRENT DATA.
- The A/F sensor's output voltage and the short-term fuel trim value can be read using the OBD scan tool or hand-held tester.
- The ECM controls the voltage of the AFR+, AFL+, AFR- and AFL- terminals of the engine ECU to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without the OBD scan tool or hand-held tester.
- OBD scan tool (excluding hand-held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the hand-held tester.

WIRING DIAGRAM

Refer to DTC P0125 on page DI-42.

DI2H7-06

CONFIRMATION DRIVING PATTERN

- (a) Connect the hand-held tester to the DLC3.
- (b) Switch the hand-held tester from the normal mode to the check mode (See page DI-3).
- (c) Start the engine and warm it up with all the accessory switches OFF.
- (d) Drive the vehicle at 60 120 km/h (38 75 mph) and engine speed at 1,400 3,200 rpm for 3 5 min. HINT:

If a malfunction exists, the check engine warning light will light up during step (d). **NOTICE:**

If the conditions in this test are not strictly followed, detection of the malfunction will not be possible. If you do not have a hand-held tester, turn the ignition switch OFF after performing steps (c) and (d), then perform steps (c) and (d) again.

INSPECTION PROCEDURE

HINT:

- If DTC P1130 is displayed, check Bank 1 Sensor 1 circuit.
- If DTC P1150 is displayed, check Bank 2 Sensor 1 circuit.
- Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

Are there any other codes (besides DTC P1130, P1150) being output?

 \rangle Go to relevant DTC chart (See page DI–14).

NO

1

DI-87

2

Check output voltage of A/F sensor.

PREPARATION:

- (a) Connect the OBD scan tool or hand-held tester to the DLC3.
- (b) Warm up the A/F sensor with the engine speed at 2,500 rpm for approx. 90 sec.

CHECK:

Read the voltage value of the A/F sensor on the screen of OBD scan tool or hand-held tester when you perform all the following conditions.

HINT:

The voltage of the AFR+ or AFL+ terminal of the engine ECU is fixed at 3.3 V and the voltage of the AFR– or AFL– terminal is fixed at 3.0 V. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AFR+, AFL+/AFR–, AFL–) of the engine ECU.

OK:

Condition	A/F Sensor Voltage Value
Engineidling	
Engine racing	Not remains at 3.30 V (0.660 V*) Not remains at 3.8 V (0.76 V*) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close	Not remains at 2.8 V (0.56 V*) or less *: When you use OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of the A/F sensor is below 2.8 V (0.56 V*), it is normal.
- During fuel cut, there is a case that the output voltage of the A/F sensor is above 3.8 V (0.76 V*), it is normally.
- If the output voltage of the A/F sensor remains at 3.30 V (0.660 V*) even after performing all the above conditions, the A/F sensor circuit may be open.
- If the output voltage of the A/F sensor remains at 3.8 V (0.76 V*) or more, or 2.8 V (0.56 V*) or less even after performing all the above conditions, the A/F sensor circuit may be short.
- *: When you use the OBD scan tool (excluding hand-held tester).

NG

3 Check for open and short in harness and connector between engine ECU and A/F sensor (See page IN–32).

Repair or replace harness or connector.

DI-88

DTC P1130 or P1150 is caused by running out of fuel.

DTC	P1133	A/F Sensor Circuit Response Malfunction (Bank 1 Sensor 1)
-----	-------	--

DTC	P1153	A/F Sensor Circuit Response Malfunction (Bank 2 Sensor 1)

CIRCUIT DESCRIPTION

Refer to DTC P0125 on page DI-42.

DTC No.	DTC Detecting Condition	Trouble Area
		Open or short in A/F sensor circuit
	After engine is warmed up, and during vehicle driving at engine	• A/F sensor
P1133	speed 1,400 rpm or more and vehicle speed 60 km/h (38 mph)	Air induction system
P1153	or more, if the response characteristic of A/F sensor becomes	Fuel pressure
	deteriorated (2 trip detection logic)	Injector
		Engine ECU

WIRING DIAGRAM

Refer to DTC P0125 on page DI-42.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

YES \rangle Go to relevant DTC chart (See page DI–14).

1	Are there any other codes (besides DTC P1133, P1153) being output?	

NO

2	Connect OBD scan tool or hand-held tester, and read value for voltage output of
	A/F sensor.

PREPARATION:

(a) Connect the OBD scan tool or hand-held tester to the DLC3.

(b) Warm up the A/F sensor with the engine speed at 2,500 rpm for approx. 90 sec.

CHECK:

Read the voltage of the A/F sensor on the screen of the OBD scan tool or hand-held tester when you perform all the following conditions.

DI2H8-06

HINT:

The voltage of the AFR+ or AFL+ terminal of the engine ECU is fixed at 3.3 V and the voltage of the AFR– or AFL– terminal is fixed at 3.0 V. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AFR+, AFL+/AFR–, AFL–) of the engine ECU.

OK:

Condition	A/F Sensor Voltage value
Engineidling	
Engineracing	Not remains at 3.30 V (0.660 V*) Not remains at 3.8 V (0.76 V*) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close	 Not remains at 3.8 V (0.76 V*) or more Not remains at 2.8 V (0.56 V*) or less *: When you use the OBD scan tool (excluding hand-held tester)

HINT:

NG

- During fuel enrichment, there is a case that the output voltage of the A/F sensor is below 2.8 V (0.56 V*), it is normal.
- During fuel cut, there is a case that the output voltage of the A/F sensor is above 3.8 V (0.76 V*), it is normal.
- If the output voltage of the A/F sensor remains at 3.30 V (0.660 V*) even after performing all the above conditions, the A/F sensor circuit may be open.
- If the output voltage of the A/F sensor remains at 3.8 V (0.76V*) or more, or 2.8 V (0.56 V*) or less even after performing all the above conditions, the A/F sensor circuit may be short.
- *: When you use the OBD scan tool (excluding hand-held tester).

3 Check for open and short in harness and connector between engine ECU and A/F sensor (See page IN–32).

DI-92

LEXUS RX300 (RM785E)

10 Did vehicle runs out of fuel in past? NO Check for intermittent problems (See page DI–3). YES DTC P1133 or P1153 is caused by running out of fuel.

DTC	P1135	A/F Sensor Heater Circuit Malfunction (Bank 1 Sensor 1)
-----	-------	---

DTC	P1155	A/F Sensor Heater Circuit Malfunction (Bank 2 Sensor 1)
-----	-------	---

CIRCUIT DESCRIPTION

Refer to DTC P0125 on page DI-42.

DTC No.	DTC Detecting Condition	Trouble Area
P1135 P1155	When the heater operates, heater current exceeds 8 A	 Open or short in heater circuit of A/F sensor A/F sensor heater Engine ECU
	Heater current of 0.25 A or less when the heater operates	

WIRING DIAGRAM

Refer to DTC P0125 on page DI-42.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

1 Check voltage between terminals HAFL, HAFR of engine ECU connector and body ground.

DI-96

		D184F-01
DTC	P1300	Igniter Circuit Malfunction (No. 1)
DTC	P1305	Igniter Circuit Malfunction (No. 2)
DTC	P1310	Igniter Circuit Malfunction (No. 3)
DTC	P1315	Igniter Circuit Malfunction (No. 4)
		•
DTC	P1320	Igniter Circuit Malfunction (No.5)
DTC	P1325	Igniter Circuit Malfunction (No.6)

CIRCUIT DESCRIPTION

A Direct Ignition System (DIS) has been adopted. The DIS improves the ignition timing accuracy, reduces high–voltage loss, and enhances the the overall reliability of the ignition system by eliminating the distributor. The DIS is a 1–cylinder ignition system which ignites one cylinder with one ignition coil. In the 1–cylinder ignition system, the one spark plug is connected to the end of the secondary winding. High voltage generated in the secondary winding is applied directly to the spark plug. The spark of the spark plug pass from the center electode to the ground electrode.

The engine ECU determines ignition timing and outputs the ignition signals (IGT) for each cylinder. Based on IGT signals, the power transistors in the igniter cuts off the current to the primary coil in the ignition coil is supplied to the spark plug that are connected to the end of the secondary coil. At the same time, the igniter also sends an ignition confirmation signal (IGF) as a fail–safe measure to the engine ECU.

DTC No.	DTC Detecting Condition	Trouble Area
P1300 P1305 P1310 P1315 P1320 P1325	No IGF signal to engine ECU while engine is running	 Open or short in IGF and IGT1 – 6 circuit from ignition coil with igniter No. 1 – No. 6 ignition coil with igniter Engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTC P1300 is displayed, check No. 1 ignition coil with igniter circuit.
- If DTC P1305 is displayed, check No. 2 ignition coil with igniter circuit.
- If DTC P1310 is displayed, check No. 3 ignition coil with igniter circuit.
- If DTC P1315 is displayed, check No. 4 ignition coil with igniter circuit.
- If DTC P1320 is displayed, check No. 5 ignition coil with igniter circuit.
- If DTC P1325 is displayed, check No. 6 ignition coil with igniter circuit.
- Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions
 when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle
 was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time
 of the malfunction.

DIAGNOSTICS - ENGINE

NG

OK

5 Check voltage between terminals IGT1 – 6 of engine ECU connector and body ground.

PREPARATION:

Remove the engine ECU with connector still connected (See page FI–70).

CHECK:

Measure voltage between terminals IGT1 - 6 of the engine ECU connector and body ground when the engine is cranked. **OK**:

Voltage: More than 0.1 V and less than 4.5 V

Reference: INSPECTION USING OSCILLOSCOPE

During cranking or idling, check waveform between terminals IGT1 – 6 and E1 of the engine ECU connector. HINT:

Correct waveform appears as shown, with rectangle waves.

NG Check a IN–32).

Check and replace engine ECU (See page IN–32).

OK

6

Disconnect ignition coil with igniter connector, and check voltage between terminals IGT1 – 6 of engine ECU connector and body ground.

PREPARATION:

- (a) Remove the engine ECU with connector still connected (See page FI–70).
- (b) Disconnect the ignition coil with the igniter connector.

CHECK:

Measure voltage between terminals IGT1 - 6 of the engine ECU connector and body ground when the engine is cranked. **OK:**

Voltage: More than 0.1 V and less than 4.5 V

Check and replace engine ECU (See page IN–32).

OK

7 Check ignition coil with igniter power source circuit.

PREPARATION:

Disconnect the ignition coil the with the igniter connector. **CHECK:**

Measure voltage between terminal 1 of the ignition coil with the igniter connector and body ground when the ignition switch is turned to ON and START position.

OK:

Voltage: 9 – 14 V

OK Repair ignition coil with igniter power source circuit.

NG

8 Check for open and short in harness and connector between ignition switch and ignition coil with igniter (See page IN–32).

Repair or replace harness or connector.

ОК

Replace ignition coil with igniter.

DI-1	01
------	----

64E-04

DTC P1335 Crankshaft Position Sensor Circuit Malfunction (During engine running)

CIRCUIT DESCRIPTION

Refer to DTC P0335 on page DI-67.

DTC No.	DTC Detecting Condition	Trouble Area
P1335	No crankshaft position sensor signal to engine ECU with en- gine speed 1,000 rpm or more	 Open or short in crankshaft position sensor circuit Crankshaft position sensor Crankshaft timing pulley Engine ECU

WIRING DIAGRAM

Refer to DTC P0335 on page DI-67.

INSPECTION PROCEDURE

HINT:

Refer to DTC P0335 on page DI-67.

DTC	P1346	VVT Sensor/Camshaft Position Sensor Cir- cuit Range/Performance Problem (Bank 1)
-----	-------	---

DTC	P1351	VVT Sensor/Camshaft Position Sensor Cir- cuit Range/Performance Problem (Bank 2)

CIRCUIT DESCRIPTION

VVT sensor (G(VV) signal) consist of a signal plate and pickup coil.

The G(VV) signal plate has 1 tooth on its outer circumference and is mounted on the intake camshafts. When the camshafts rotate, the protrusion on the signal plate and the air gap on the pickup coil change, causing fluctuations in the magnetic field and generating an electromotive force in the pickup coil.

The actual camshaft angle is detected by the VVT sensor and it provides feedback to the engine ECU to control the intake valve timing in response to during condition.

DTC No.	Detection Item	Trouble Area
P1346	Deviation in crankshaft position sensor signal and VVT sensor (Bank 1) signal (2 trip detection logic)	Mechanical system malfunction (Skipping teeth of timing belt,
P1351	Deviation in crankshaft position sensor signal and VVT sensor (Bank 2) signal (2 trip detection logic)	• Engine ECU

WIRING DIAGRAM

Refer to DTC P0335 on page DI-67.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1

Check valve timing (Check for loose and jumping teeth of timing belt) (See page EM–22).

NG

Adjust valve timing (Repair or replace timing belt).

DI1MB-11

ΟΚ

Check and replace engine ECU (See page IN–32).

DTC	P1349	VVT System Malfunction (Bank 1)
-----	-------	---------------------------------

DTC	P1354	VVT System Malfunction (Bank 2)
-----	-------	---------------------------------

CIRCUIT DESCRIPTION

VVT system controls the intake valve timing to proper timing in response to driving condition. Engine ECU controls OCV (Oil Control Valve) to make the intake valve timing properly, and, oil pressure controlled with OCV is supplied to the VVT controller, and then, VVT controller changes relative position between the camshaft and the crankshaft.

DTC No.	DTC Detecting Condition	Trouble Area
	Condition (a) or (b) continues for after the engine is	Valve timing
P1349	warmed up and engine speed at 400 – 4,000 rpm:	Oil control valve
P1354	(a) Valve timing does not change from of current valve timing	VVT controller assembly
	(b) Current valve timing is fixed	Engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DI7I6-04

Hand-held tester:

1	Check valve timing (See page EM–22).
	NG Repair valve timing.

ΟΚ

2

Check operation of OCV.

PREPARATION:

(a) Start the engine and warmed it up.

(b) Connect the hand-held tester and select VVT from ACTIVE TEST menu.

CHECK:

Check the engine speed when operate the OCV by the hand-held tester.

OK:

VVT system OFF to ON (OCV OFF to ON): Engine speed increases. VVT system ON to OFF (OCV ON to OFF): Engine is stalled.

OK VVT system is OK.*

*: DTC P1349 are also output after the foreign object is caught in some part of the system in the engine oil and the system returns to normal in a short time. As engine ECU controls so that foreign objects are ejected, there is no problem about VVT. There is also no problem since the oil filter should get the foreign object in the engine oil.

NG

3

Check voltage between terminals OCV+ and OCV- of engine ECU connector.

HINT:

Reference: INSPECTION USING OSCILLOSCOPE Turn the ignition switch ON, and check waveform between terminals OCV+ and OCV- of the engine ECU connector.

• The correct waveform is as shown.

• The waveform frequency (A) is lengthened as the engine speed becomes higher.

*: DTC P1349 are also output after the foreign object is caught in some part of the system in the engine oil and the system returns to normal in a short time. As engine ECU controls so that foreign objects are ejected, there is no problem about VVT. There is also no problem since the oil filter should get the foreign object in the engine oil.

Replace engine ECU

OBD scan tool (excluding hand-held tester):

A06076

Go to step 4.

1

LEXUS RX300 (RM785E)

*: DTCs P1349 are also output after the foreign object is caught in some part of the system in the engine oil and the system returns to normal in a short time. As engine ECU controls so that foreign objects are ejected, there is no problem about VVT. There is also no problem since the oil filter should get the foreign object in the engine oil.

NG

Check and replace engine ECU (See page IN-32).

4 Check valve timing controller assembly.

Replace VVT controller assembly, and then go to step 5.

OK

5	Check oil control valve (See page FI–42).	
	NG Replace oil control valve, and then go to step 6.	

ΟΚ

DI-108

CHECK:

Check whether or not DTC P1349 is stored (See page DI-3).

OK:

DTC P1349 is not stored

OK VVT system is OK.*

*: DTCs P1349 are also output after the foreign object is caught in some part of the system in the engine oil and the system returns to normal in a short time. As engine ECU controls so that foreign objects are ejected, there is no problem about VVT. There is also no problem since the oil filter should get the foreign object in the engine oil.

DI84G-02

DTC P1350 VVT Sensor/Camshaft Position Sensor Circuit Malfunction (Bank 2)

CIRCUIT DESCRIPTION

Refer to DTC P1346, P1351 on page DI-102.

DTC No.	DTC Detecting Condition	Trouble Area
	No VVT sensor (Camshaft position sensor) signal to engine ECU during cranking at 4 sec. or more	Open or short in VVT sensor (camshaft position sensor) cir-
P1345 P1350	No VVT sensor (Camshaft position sensor) signal to engine ECU with 5 sec. or more engine speed 600 rpm or more	cuit • VVT sensor (camshaft position sensor) • Camshaft timing gear • Engine ECU
	While crankshaft rotates twice, VVT sensor (Camshaft position sensor) signal will be input to engine ECU 5 times.	

WIRING DIAGRAM

Refer to DTC P0335 on page DI-67.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

1

Check resistance of VVT sensor (See page IG-1).

Reference: INSPECTION USING OSCILLOSCOPE

During idling, check the waveforms between terminals VV1 and NE+, and VV2 and NE– of the engine ECU connector. HINT:

- The correct waveforms are as shown.
- The waveform frequency is shortened as the engine speed becomes higher.

NG

Replace VVT sensor.

ок

2	Check for open and short in harness and connector between engine ECU and VVT sensor (See page IN–32).	
	NG Repair or replace harness or connector.	
ОК		
3	Inspect sensor installation and signal plate teeth of camshaft timing gear.	
	NG Tighten sensor. Replace camshaft timing gear.	
ОК		
Chec (See	k and replace engine ECU page IN–32).	

-

DTC

CIRCUIT DESCRIPTION

This signal is used to detect when the brakes have been applied. The STP signal voltage is the same as the voltage supplied to the stop lights.

The STP signal is used mainly to control the fuel cut–off engine speed (The fuel cut–off engine speed is reduced slightly when the vehicle is braking.).

DTC No.	DTC Detecting Condition	Trouble Area
P1520	Stop light switch does not turn off when repeating driving at 30 km or more 10 time or more after depressing brake (2 trip	 Short in stop light switch signal circuit Stop light switch
	detection logic)	• Engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

Check if the stop lights go on and off normally when the brake pedal is operated and released.

NG

Check and repair stop light circuit.

DI088-12

P1600

ECU BATT Malfunction

CIRCUIT DESCRIPTION

Battery positive voltage is supplied to terminal BATT of the engine ECU even when the ignition switch is OFF for use by the DTC memory and air-fuel ratio adaptive control value memory, etc.

DTC No.	DTC Detecting Condition	Trouble Area
P1600	Open in back up power source circuit	Open in back up power source circuit Engine ECU

HINT:

If DTC P1600 appear, the engine ECU does not store another DTC.

WIRING DIAGRAM

DI1ME-17

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DTC	

Body ECU Malfunction

CIRCUIT DESCRIPTION

ECU receives the operating condition (ON/OFF) of A/C from A/C ECU and it also receives the electrical load information from the body ECU.

ECU uses these information to control the engine (idle up, etc.).

DTC No.	DTC Detecting Condition	Trouble Area
	Condition (a) or (b) continues for 5.0 seconds or more:	• Body ECU
P1645	(a) No communication from body ECU	• A/C ECU
	(b) No communication from A/C ECU	Communication bus

INSPECTION PROCEDURE

Perform troubleshooting the Multiplex Communication System (See page DI-683).

DI64J-03

DTC	P1651	VSV for ACIS Circuit Malfunction (Bank 1)

DI64K-03

DTC	P1666	VSV for ACIS Circuit Malfunction (Bank 2)
-----	-------	---

CIRCUIT DESCRIPTION

This circuit opens and closes the IACV (Intake Air Control Valve) in response to the engine load in order to increase the intake efficiency (ACIS: Acoustic Control Induction System).

When the engine speed is 3,700 rpm or less and the throttle valve opening angle is 30° or more, the engine ECU turns the two VSV ON or OFF and operate the IACV.

DTC No.	DTC Detecting Condition	Trouble Area
P1651 P1666	Proper response to engine ECU command does not occur (2 trip detection logic)	 Open or short in VSV circuit for ACIS VSV for ACIS Engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

Hand-held tester:

HINT:

- Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
- If DTC P1651 displayed, check left bank VSV circuit.
- If DTC P1666 displayed, check right bank VSV circuit.

- Connect the hand-held tester to the DLC3.
- Turn the ignition switch ON and push the hand-held tester main switch ON.
- Select the ACTIVE TEST mode on the hand-held tester.

Check operation of the VSV when VSV is operated by the

Air from port E flows out through port F.

Air from port E flows out through the air filter.

 DIAGNOSTICS - ENGINE

 OK

 Check for vacuum tank (See page FI-53).

 2

 Check VSV for ACIS (See page FI-53).

 NG

 Replace VSV for ACIS.

 OK

 3

 Check for open and short in harness and connector between EFI main relay and (Marking: EFI) engine ECU (See page IN-32).

Repair or replace harness or connector.

ΟΚ

Check and replace engine ECU (See page IN–32).

OBD scan tool (excluding hand-held tester):

OK

2

Check voltage between terminal ACIS of engine ECU connector and body ground.

PREPARATION:

- (a) Remove the engine ECU with connector still connected (See page FI–70).
- (b) Turn the ignition switch ON.

CHECK:

Measure the voltage between terminal ACIS, ACI1 of the engine ECU connector and body ground.

OK:

Voltage: 9 – 14 V

Check for open and short in harness and connector between EFI main relay (Marking: EFI) and engine ECU (See page IN–32).

ΟΚ

Check and replace engine ECU (See page IN–32).

DTC	P1656	OCV Circuit Malfunction (bank 1)

DI6TC-02

DTC	P1663	OCV Circuit Malfunction (bank 2)
-----	-------	----------------------------------

CIRCUIT DESCRIPTION

Refer to DTC P1349, P1354 on page DI-103.

DTC No.	DTC Detecting Condition	Trouble Area
P1656 P1663	Open or short in oil control valve circuit	Open or short in OCV circuit OCV Engine ECU

WIRING DIAGRAM

Refer to DTC P1349, P1354 on page DI-103.

INSPECTION PROCEDURE

HINT:

- If DTC P1656 dysplayed, check left bank OCV circuit.
- If DTC P1663 dysplayed, check right bank OCV circuit.
- Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

Hand-held tester:

1 Check OCV circuit.

PREPARATION:

(a) Start the engine and warmed it up.

(b) Connect the hand-held tester and select the VVT from the ACTIVE TEST menu.

CHECK:

Check the engine speed when operate the OCV by the hand-held tester.

OK:

VVT system is OFF (OCV is OFF): Normal engine speed VVT system is ON (OCV is ON): Rough idle or engine stalled

Check for intermittent problems (See page DI–3).

Ν	IG
	/

OK

3 Check voltage between terminals OCV+ and OCV– of engine ECU connector (See page DI–103, step 3).	ector
--	-------

OBD scan tool (excluding hand-held tester):

DI84H-01

DTC

P1780/97

Park/Neutral Position Switch Malfunction

CIRCUIT DESCRIPTION

The neutral start switch goes on when the shift lever is in the N or P shift position. When it goes on, terminal NSW of the engnie ECU is grounded to body ground via the starter relay, thus the terminal NSW voltage becomes 0V. When the shift lever is in the D, 2, L or R position, the neutral start switch goes off, so the voltage of the engnie ECU. Terminal NSW becomes battery voltage, the voltage of the engnie ECU internal power source. If the shift lever is moved from the N position to the D position, this signal is used for air–fuel ratio correction and for idle speed control (estimated control), etc.

DTC No.	DTC Detecting Condition	Trouble Area
P1780/97	When driving under conditions (a) and (b) for 30 sec. or more the neutral start switch is ON (N position): (2 trip detection logic) (a) Vehicle speed: 40 km/h (25 mph) or more (b) Engine speed: 1,500 – 4,000 rpm	 Short in neutral start switch circuit Neutral start switch engnie ECU

HINT:

After confirming DTC P1780/97, use the hand-held tester to confirm the PNP switch signal from the CUR-RENT DATA.

WIRING DIAGRAM

Refer to DTC P1780 on page DI-188.

INSPECTION PROCEDURE

Refer to DTC P1780 on page DI-188.

DI6EA-02

ECU Power Source Circuit

CIRCUIT DESCRIPTION

When the ignition switch is turned ON, battery positive voltage is applied to terminal IGSW of the engine ECU and the EFI main relay (Marking: EFI) control circuit in the engine ECU sends a signal to terminal MREL of the engine ECU switching on the EFI main relay.

This signal causes current to flow to the coil, closing the contacts of the EFI main relay and supplying power to terminal +B of the engine ECU.

If the ignition switch is turned off, the engine ECU continues to switch on the EFI main relay for a maximum of 2 seconds for the initial setting of the IAC valve.

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check voltage between terminals +B and E1 of engine ECU connectors.

PREPARATION:

- Remove the engine ECU with connector still connected (See page FI–70).
- (b) Turn the ignition switch ON.

CHECK:

Measure the voltage between terminals +B and E1 of the engine ECU connectors.

```
OK:
```

Voltage: 9 – 14 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–21).

 NG

 2
 Check for open in harness and connector be

Check for open in harness and connector between terminal E1 of engine ECU and body ground (See page IN–32).

NG

 \rangle Repair or replace harness or connector.

OK

3

Check voltage between terminal IGSW of engine ECU connector and body ground.

PREPARATION:

- (a) Remove the engine ECU with connector still connected (See page FI–70).
- (b) Turn the ignition switch ON.

CHECK:

OK

Measure the voltage between terminal IGSW of the engine ECU connector and body ground.

Voltage: 9 – 14 V

 \rangle Go to step 6.

LEXUS RX300 (RM785E)

NG

DI-126

DI1BW-07

Fuel Pump Control Circuit

CIRCUIT DESCRIPTION

In the diagram below, when the engine is cranked, current flows from terminal ST of the ignition switch to the starter relay coil and also current flows to terminal STA of engine ECU (STA signal).

When the STA signal and NE signal are input to the engine ECU, Tr is turned ON, current flows to coil of the circuit opening relay, the relay switches on, power is supplied to the fuel pump and the fuel pump operates.

While the NE signal is generated (engine running), the engine ECU keeps Tr ON (circuit opening relay ON) and the fuel pump also keeps operating.

WIRING DIAGRAM

INSPECTION PROCEDURE Hand-held tester:

Check voltage between terminal FC of engine ECU connector and body ground.

PREPARATION:

(a) Remove the engine ECU with connector still connected (See page FI–70).

(b) Turn the ignition switch ON.

CHECK:

Measure the voltage between terminal FC of the engine ECU connector and body ground.

OK:

NG

Check for open in harness and connector between EFI main relay (Marking: EFI) and circuit opening relay, and circuit opening relay and engine ECU.

5	Check fuel pump (See page FI–5).	
	NG Repair or replace fuel pump.	
ОК		
6	Check for open in harness and connector between circuit opening relay and fuel	

NG

pump, and fuel pump and body ground (See page IN-32).

Repair or replace harness or connector.

OK

Check and replace engine ECU (See page IN–32).

OBD scan tool (excluding hand-held tester):

LEXUS RX300 (RM785E)

OK

Check voltage between terminal FC of engine ECU connector and body ground.

PREPARATION:

(a) Remove the engine ECU with connector still connected (See page FI–70).

(b) Turn the ignition switch ON.

CHECK:

Measure the voltage between terminal FC of the engine ECU connector and body ground.

OK:

NG

Check for open in harness and connector between EFI main relay (Marking: EFI) and circuit opening relay, and circuit opening relay and engine ECU.

5	Check fuel pump (See page FI–5).
	NG Repair or replace fuel pump.
ОК	
6	Check for open in harness and connector between circuit opening relay and fuel pump, and fuel pump and body ground (See page IN–32).

NG

Repair or replace harness or connector.

ΟΚ

Check and replace engine ECU (See page IN–32).

DI0A7-07

Starter Signal Circuit

CIRCUIT DESCRIPTION

When the engine is cranked, the intake air flow is slow, so fuel vaporization is poor. A rich mixture is therefore necessary in order to achieve good startability. While the engine is being cranked, the battery positive voltage is applied to terminal STA of the engine ECU. The starter signal is mainly used to increase the fuel injection volume for the starting injection control and after–start injection control.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

This diagnostic chart is based on the premise that the engine is cranked normally. If the engine is not cranked, proceed to the problem symptoms table on page DI–21.

Hand-held tester:

1

Connect hand-held tester, and check STA signal.

PREPARATION:

(a) Connect the hand-held tester to the DLC3.

(b) Turn the ignition switch ON and push the hand-held tester main switch ON.

CHECK:

Read the STA signal on the hand-held tester while the starter operates.

OK:

Ignition Switch Position	ON	START
STA Signal	OFF	ON

NG 2 Check for open in harness and connector between engine ECU and starter relay (See page IN-32). NG Repair or replace harness or connector. OK

Check and replace engine ECU (See page IN–32).

OBD scan tool (excluding hand-held tester):

NG	
\sim	
2	Check for open in harness and connector between engine ECU and starter relay (See page IN–32).
	NG Repair or replace harness or connector.
ОК	
Check (See p	and replace engine ECU bage IN–32).

Check Engine Warning Light Circuit Malfunction

CIRCUIT DESCRIPTION

If the engine ECU detects trouble, the check engine warning lights up. At this time, the engine ECU records a DTC in memory.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Troubleshoot in accordance with the chart below for each trouble symptom.

Check engine does not light up	Start inspection from step 1 in case of using hand–held tester and start from step 2 in case of not using hand–held tester
Check engine remains on	After inspection of step 3, start inspection from step 4 in case of using hand–held tester and start from step 5 in case of not using hand–heldtester

1 Check operation of check engine warning light.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Switch the hand-held tester from the normal mode to the check mode.

CHECK:

Check if the check engine warning light blinks.

OK:

The check engine warning light blinks.

NG

2 Check check engine warning light.

See combination meter troubleshooting (See page BE-2).

NG

Repair or replace bulb or combination meter as-

 OK

 3
 Check that engine ECU connectors are securely connected to engine ECU.

 NO
 Connect connector to engine ECU.

 YES

Check for open circuit in harness and connector between combination meter and engine ECU (See page IN–32).

TC Terminal Circuit

CIRCUIT DESCRIPTION

Terminal TC and CG are located in the DLC3. When connecting these terminals, DTCs in normal mode or test mode can be read through the check engine warning light in combination meter by flashing it.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- Even though terminal TC is not connected with terminal CG, the check engine warning light blinks.
- For the above phenomenon, an open or short in the wire harness, or malfunction inside the engine ECU is the likely cause.

DI6SV-09

DI0SI -19

AUTOMATIC TRANSAXLE HOW TO PROCEED WITH TROUBLESHOOTING

:

CUSTOMER PROBLEM ANALYSIS CHECK

DI0SM-18

Automatic Transaxle	
System Check Sheet	

Inspector's Name

				-		
			Registration No.			
Customer's Name			Registration Year	/	/	
			Frame No.			
Date Vehicle Brought In	/	/	Odometer Reading		km mile	
Data Problem						
Occurred			/			
How Often Does Problem Occur?		tinuous	Intermittent (times a day)		
r	1					
	Vehicle does	s not vome (Any range 🗌 Partic	ular range)		
	$\square \text{ No up-shift} (\ \square \ 1st \rightarrow 2nd \ \square \ 2nd \rightarrow 3rd \ \square \ 3rd \rightarrow 4th \ \square \ 4th \rightarrow O/D)$					
	$\Box \text{ No down-shift} (\Box \text{ O/D} \rightarrow 4\text{th} \Box 4\text{th} \rightarrow 3\text{rd} \Box 3\text{rd} \rightarrow 2\text{nd} \Box 2\text{nd} \rightarrow 1\text{st})$					
	Lock–up malfunction					
	□ Shift point too high or too low					
Symptoms	Harsh engag	gement (🗌 N	\rightarrow D \Box Lock–up \Box A	ny drive range)		
	Slip or shud	der				
	No kick–down					
					\mathbf{i}	
Check Item	Check Engine Warning Light (CHK ENG)	Normal	Remains ON			
DTC Check	1st Time	Normal co	ode	code (DTC)	
	2nd Time	🗌 Normal co	ode 🗌 Malfunction d	code (DTC)	

PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Description for EURO–OBD
 - When troubleshooting Euro–OBD vehicles, the only difference from the usual troubleshooting procedure is that you connect to the vehicle the OBD scan tool complying with ISO 15031–4 or hand– held tester, and read off various data output from the vehicle's engine ECU.

DI84I-01

Euro–OBD regulations require that the vehicle's on–board computer lights up the check engine warning ignition the instrument panel when the computer detects a malfunction in the emission control system/components or in the power–train control components which affect vehicle emissions, or a malfunction in the computer. In addition to the check engine warning light (CHK ENG) lighting up when a malfunction is detected, the applicable Diagnostic Trouble Codes (DTCs) prescribed by ISO15031–6 are recorded in the engine ECU memory (See page DI–14). If the malfunction does not repaired in 3 consecutive trips, the (CHK ENG) goes off automatically but the DTCs remain recorded in the engine ECU memory.

 To check the DTCs, connect the OBD scan tool or hand-held tester to the Data Link Connector 3 (DLC3) on the vehicle. The OBD scan tool or handheld tester also enables you to erase the DTCs and check freezed frame data and various forms of engine data (For operating instructions, see the OBD scan tool's instruction book.).

DTCs include ISO controlled codes and manufacturer controlled codes. ISO controlled codes must be set as prescribed by the ISO, while manufacturer controlled codes can be set freely by the manufacturer within the prescribed limits (See DTC chart on page DI–155).

- The diagnosis system operates in normal mode during normal vehicle use. It also has a check mode for technicians to simulate malfunction symptoms and troubleshoot. Most DTCs use 2 trip detection logic* to prevent erroneous detection, and ensure thorough malfunction detection. By switching the engine ECU to check mode when troubleshooting, the technician can cause the check engine warning light to light up for a malfunction that is only detected once or momentarily (Hand–held tester only) (See step 2).
- *2 trip detection logic:

When a malfunction is first detected, the malfunction is temporarily stored in the engine ECU memory (1st trip). If the same malfunction is detected again during the second drive test, this second detection causes the (CHK ENG) to light up (2nd trip).

(However, the ignition switch must be turned OFF between the 1st trip and the 2nd trip.)

b) Check the DLC3.

The vehicle's engine ECU uses the ISO 9141–2 communication protocol. The terminal arrangement of DLC3 complies with ISO 15031–3 and matches the ISO 9141–2 format.

Tester connection	Condition	Specifiedcondition
7 (Bus \oplus Line) – 5 (Signal ground)	Duringcommunication	Pulsegeneration
4 (Chassis Ground) – Body	Always	1 Ω or less
5 (Signal Ground) – Body	Always	1 Ω or less
16 (B+) – Body	Always	9 – 14 V

HINT:

If your display shows UNABLE TO CONNECT TO VEHICLE when you have connected the cable of the OBD scan tool or hand-held tester to the DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

2. INSPECT DIAGNOSIS (Normal Mode)

- (a) Check the CHK ENG.
 - (1) The CHK ENG comes on when the ignition switch is turned ON and the engine is not running.

HINT:

If the CHK ENG does not light up, troubleshoot the combination meter (See page BE–68).

- (2) When the engine is started, the CHK ENG should go off. If the light remains on, the diagnosis system has detected a malfunction or abnormality in the system.
- (b) Check the DTC using hand-held tester.

NOTICE:

Hand-held tester only:

When the diagnosis system is switched from normal mode to check mode, it erases all DTCs and freezed frame data recorded in normal mode. So before switching modes, always check the DTCs and freezed frame data, and note them down.

- (1) Prepare the hand-held tester.
- (2) Connect the hand-held tester to DLC3.
- (3) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (4) Use the hand-held tester to check the DTCs and freezed frame data, note them down (For operating instructions, see the hand-held tester instruction book.).
- (5) See page DI–155 to confirm the details of the DTCs.

NOTICE:

- When simulating symptoms with out a hand-held tester to check the DTCs, use normal mode. For code on the DTC chart subject to "2 trip detection logic", turn the ignition switch OFF after the symptom is simulated the first time. Then repeat the simulation process again. When the problem has been simulated twice, the CHK ENG is indicated on the instrument panel and the DTCs are recorded in the engine ECU.
- Check the 1st trip DTC using Mode 7 for ISO 15031 (Continuous Test Results of Euro–OBD function in hand–held tester).

3. INSPECT DIAGNOSIS (Check (Test) Mode)

HINT:

Hand-held tester only:

Compared to the normal mode, the check mode has an increased sensitivity to detect malfunctions.

Furthermore, the same diagnostic items which are detected in the normal mode can also be detected in the check (test) mode.

- (a) Check the DTC.
 - (1) Initial conditions
 - Battery voltage 11 V or more
 - Throttle valve fully closed.
 - Transmission in P or N range
 - A/C switched OFF
 - (2) Turn the ignition switch OFF.
 - (3) Prepare the hand-held tester.
 - (4) Connect the hand-held tester to the DLC3.
 - (5) Turn the ignition switch ON and push the hand-held tester main switch ON.
 - (6) Switch the hand-held tester from the normal mode to the check (test) mode.

NOTICE:

If the hand-held tester switches the engine ECU from normal mode to check mode or vice-versa, or if the ignition switch is turned from ON to ACC or OFF during check mode, the DTCs and freezed frame data will be erased.

- (7) Start the engine.
- (8) Simulate the conditions of the malfunction described by the customer.

NOTICE:

Leave the ignition switch ON until you have checked the DTCs, etc.

(9) After simulating the malfunction conditions, use the hand-held tester diagnosis selector to check the DTCs and freezed frame data, etc.

HINT:

Take care not to turn the ignition switch OFF. Turning the ignition switch OFF switches the diagnosis system from check (test) mode to normal mode. so all DTCs, etc. are erased.

- (10) After checking the DTC, inspect the applicable circuit.
- (b) Clear the DTC.

The DTCs and freezed frame data will be erased by either actions.

- Operating the hand-held tester to erase the codes (See the hand-held tester's instruction book for operating instructions.).
- (2) Disconnecting the battery terminals of EFI and ECTS fuses.

NOTICE:

If the hand-held tester switches the engine ECU from normal mode to check mode or vice-versa, or if the ignition switch is turned from ON to ACC or OFF during check mode, the DTCs and freezed frame data will be erased.

- (c) Engine ECU Terminal Values Measurement Using Break–Out–Box and Hand–Held Tester
 - (1) Hook up the break–out–box and hand–held tester to the vehicle.
 - (2) Read the engine ECU input/output values by following the prompts on the tester screen.

HINT:

- Hand-held tester has a "Snapshot" function. This records the measured values and is effective in the diagnosis of intermittent problems.
- Please refer to the hand-held tester/break-out-box operator's manual for further details.

4. ROAD TEST

NOTICE:

Perform the test at normal operating ATF temperature 50 - 80 °C (122 - 176 °F).

(a) D range test

Shift into the D range and fully depress the accelerator pedal and and check the following points:

(1) Check up–shift operation.

 $1 \rightarrow 2$, $2 \rightarrow 3$ and $3 \rightarrow O/D$ up-shift takes place, at the shift point shown in the automatic shift schedule (See page SS-22).

HINT:

- O/D Gear Up-shift Prohibition Control (1. Coolant temp. is 60 °C (140 °F) or less. 2. If there is a 10 km/h (6 mph) difference between the set cruise control speed and vehicle speed.)
- O/D Gear Lock-up Prohibition Control (1. Brake pedal is depressed. 2. Coolant temp. is 60 °C (140 °F) or less.)
 - (2) Check for shift shock and slip. Check for shock and slip at the 1 \rightarrow 2, 2 \rightarrow 3 and 3 \rightarrow O/D up–shifts.
 - Check for abnormal noises and vibration.
 Run at the D range lock-up or O/D gear and check for abnormal noises and vibration.

HINT:

The check for the cause of abnormal noises and vibration must be done very thoroughly as it could also be due to loss of balance in the differential torque converter, etc..

- (4) Check kick-down operation.
 - While running in the D range, 2nd, 3rd and O/D gears, check to see that the possible kick–down vehicle speed limits for $2 \rightarrow 1$, $3 \rightarrow 2$ and $O/D \rightarrow 3$ kick–downs conform to those indicated on the automatic shift schedule (See page SS–22).
- (5) Check abnormal shock and slip at kick–down.
- (6) Check the lock–up mechanism.
 - Drive in D range, O/D gear, at a steady speed (lock–up ON) of about 80 km/h (49 mph).

• Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.

If there is a big jump in engine speed, there is no lock-up.

- (b) 2 range test
 - Shift into the 2 range and fully depress the accelerator pedal and check the following points:
 - (1) Check up-shift operation.
 - Check to see that the 1 \rightarrow 2 up–shift takes place and that the shift point conforms to the automatic shift schedule (See page SS–22).

HINT:

There is no O/D up-shift and lock-up in the 2 range.

- (2) Check engine braking.
 - While running in the 2 range and 2nd gear, release the accelerator pedal and check the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration, and for shock at up–shift and down–shift.
- (c) L range test

Shift into the 2 range and fully depress the accelerator pedal and check the following points:

- (1) Check no up-shift.While running in the L range, check that there is no up-shift to 2nd gear.
- (2) Check engine braking.
 While running in the L range, release the accelerator pedal and check the engine braking effect.
 (2) Check for all and provide a during a second statement of the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration.
- (d) R range test

Shift into the R range and fully depress the accelerator pedal and check for slipping.

CAUTION:

Before conducting this test ensure that the test area is free from people and obstruction.

(e) P range test

Stop the vehicle on a grade (more than 5°) and after shifting into the P range, release the parking brake. Then, check to see that the parking lock pawl holds the vehicle in place.

5. BASIC INSPECTION

(a) Check the fluid level.

HINT:

• Drive the vehicle so that the engine and transaxle are at normal operating temperature.

Fluid temp.: 70 – 80 °C (158 – 176 °F)

• Only use the COOL range on the dipstick as a rough reference when the fluid is replaced or the engine does not run.

- (1) Park the vehicle on a level surface and set the parking brake.
- (2) With the engine idling and the brake pedal depressed, shift the shift lever into all ranges from P to L range and return to P range.
- (3) Pull out the dipstick and wipe it clean.
- (4) Push it back fully into the pipe.
- (5) Pull it out and check that the fluid level is in the HOT range.

If the level is at the low side, add new fluid.

- Fluid type: ATF Type T–IV or equivalent
- Capacity: 3.9 liters (4.1 US qts, 3.4 lmp. qts) NOTICE:

Do not overfill.

(b) Check the fluid condition.

If the level is at the low side, add new fluid.

- (c) Replace the ATF.
 - (1) Remove the drain plug and drain the fluid.
 - (2) Reinstall the drain plug securely.

(3) With the engine OFF add new fluid through the oil filler pipe.

Fluid type: ATF Type T–IV or equivalent Capacity: 3.9 liters (4.1 US qts, 3.4 lmp. qts)

- (4) Start the engine and shift the shift lever into all ranges from P to L range and then shift into P range.
- (5) With the engine idling, check the fluid level. Add fluid up to the COOL level on the dipstick.
- (6) Check the fluid level at the normal operating temperature, 70 – 80 °C (158 – 176 °F), and add as necessary.

NOTICE:

Do not overfill.

(d) Check the fluid leaks.

Check for leaks in the transaxle.

If there are leaks, it is necessary to repair or replace O-rings, gasket, oil seals, plugs or other parts.

(e) Inspect and adjust the shift lever position.

When shifting the shift lever from the N range to other ranges, check that the lever can be shifted smoothly and accurately to each range and that the position indicator is not aligned with the correct position.

If the indicator is not aligned with the correct position, carry out the following adjustment procedures.

- (1) Loosen the nut on the shift lever.
- (2) Push the control shaft fully rearward.
- (3) Return the control shaft lever 2 notches to N range.
- (4) Set the shift lever to N range.
- (5) While holding the shift lever lightly toward the R range side, tighten the shift lever nut.

Torque: 13 N·m (130 kgf·cm, 9 ft·lbf)

(6) Start the engine and make sure that the vehicle moves forward when shifting the lever from the N to D range and reverses when shifting it to the R range.

(f) Inspect and adjust the neutral start switch.

Check that the engine can be started with the shift lever only in the N or P range, but not in other ranges.

If it is not as stated above, carry out the following adjustment procedures.

- (1) Loosen the neutral start switch bolt and set the shift lever to the N range.
- (2) Align the groove and neutral basic line.
- (3) Hold in position and tighten the bolt.

Torque: 5.4 N·m (55 kgf·cm, 48 in·lbf)

For continuity inspection of the neutral start switch, see page DI–188.

(g) Check the idle speed.
 Idle speed: 700 ± 50 rpm
 (In N range and air conditioner OFF)

6. MECHANICAL SYSTEM TESTS

(a) Measure the stall speed.

The object of this test is to check the overall performance of the transaxle and engine by measuring the stall speeds in the D and R ranges.

NOTICE:

- Do the test at normal operating fluid temperature 50 80 °C (122 176 °F).
- Do not continuously run this test longer than 5 seconds.
- To ensure safety, conduct this test in a wide, clear level area which provides good traction.
- The stall test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
 - (1) Chock the 4 wheels.
 - (2) Connect an OBD scan tool or hand-held tester to DLC3.
 - (3) Fully apply the parking brake.
 - (4) Keep your left foot pressed firmly on the brake pedal.

(5) Start the engine.

LEXUS RX300 (RM785E)

(6) Shift into the D range. Press all the way down on the accelerator pedal with your right foot. Quickly read the stall speed at this time.

Stall speed: 2,325 - 2,775 rpm

Evaluation:

Problem	Possible cause
(a) Stall speed low in D and R ranges	 Engine output may be insufficient Stator one-way clutch is operating properly HINT: If more than 600 rpm below the specified value, the torque converter could be faulty.
(b) Stall speed high in D range	 Line pressure too low Forward clutch slipping No. 2 one–way clutch not operating properly O/D clutch slipping
(c) Stall speed high in R range	 Line pressure too low Direct clutch slipping 1st and reverse brake slipping O/D clutch slipping
(d) Stall speed high in D and R ranges	 Line pressure too low Improper fluid level O/D one-way clutch not operating properly

(b) Measure the time lag.

When the shift lever is shifted while the engine is idling, there will be a certain time lapse or lag before the shock can be felt. This is used for checking the condition of the O/D direct clutch, forward clutch, and 1st and reverse brake.

NOTICE:

• Do the test at normal operating fluid temperature 50 – 80 °C (122 – 176 °F).

• Be sure to allow 1 minute interval between tests.

• Take 3 measurements and take the average value.

- (1) Connect an OBD scan tool or hand-held tester to DLC3.
- (2) Fully apply the parking brake.
- (3) Start the engine and check idle speed.

Idle speed: 700 ± 50 rpm (In N range and air conditioner OFF)

(4) Shift the shift lever from N to D range. Using a stop watch, measure the time from when the lever is shifted until the shock is felt.

In the same manner, measure the time lag for $N \rightarrow R$.

Time lag:

 $N \rightarrow D$ Less than 1.2 seconds

$N \rightarrow R$ Less than 1.5 seconds

Evaluation (If $N \rightarrow D$ time or $N \rightarrow R$ time lag is longer than specified):

Problem	Possible cause
$N \rightarrow D$ time lag is longer	 Line pressure too low Forward clutch worn O/D one-way clutch not operating
N ightarrow R time lag is longer	 Line pressure too low Direct clutch worn 1st and reverse brake worn O/D one-way clutch not operating properly

7. HYDRAULIC TEST

Measure the line pressure. **NOTICE:**

- Do the test at normal operation fluid temperature 50 80 °C (122 176 °F)
- The line pressure test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
- Be careful to prevent SST's hose from interfering with the exhaust pipe.
 - (1) Warm up the ATF.
 - Remove the test plug on the transaxle case front left side and connect SST. (See page AX–30 for the location to connect SST)
 - SST 09992-00095 (09992-00231, 09992-00271)
 - (3) Fully apply the parking brake and chock the 4 wheels.
 - (4) Connect an OBD scan tool or hand-held tester to DLC3.
 - (5) Start the engine and check idling speed.
 - (6) Keep your left foot pressed firmly on the brake pedal and shift into D range.
 - (7) Measure the line pressure when the engine is idling.
 - (8) Depress the accelerator pedal all the way down. Quickly read the highest line pressure when engine speed reaches stall speed.
 - (9) In the same manner, do the test in R range.

Specified line pressure:

Condition	D range kPa (kgf/cm ² , psi)	R range kPa (kgf/cm ² , psi)
Idling	372 - 412 (3.8 - 4.2, 54 - 59)	672 - 742 (6.9 - 7.6, 97 - 107)
Stall	931 – 1,031 (9.5 – 10.5, 134 – 149)	1,768 – 1,968 (18.0 – 20.1, 255 – 284)

If the measured pressure is not up to specified value, recheck the throttle cable adjustment and retest. **Evaluation**

Problem	Possible cause
If the measured values at all range are higher	Throttle cable out of adjustment Throttle valve defective Regulator valve defective
If the measured values at all range are lower	 Throttle cable out of adjustment Throttle valve defective Regulator valve defective Oil pump defective O/D direct clutch defective
If pressure is low in the D range only	D range circuit fluid leakage Forward clutch defective
If pressure is low in the R range only	 R range circuit fluid leakage Direct clutch defective 1st and reverse brake defective

8. MANUAL SHIFTING TEST

HINT:

With this test, it can be determined whether the trouble is within the electrical circuit or is a mechanical problem in the transaxle.(a) Disconnect the solenoid wire.

(b) Inspect the manual driving operation.

Check that the shift and gear positions correspond with the table below.

While driving, shift through the L, 2 and D ranges. Check that the gear change corresponds to the shift range.

Shiftrange	Gear position
D	O/D
2	O/D
L	1st
R	Reverse
Р	Pawl Lock

HINT:

If the L, 2 and D range gear positions are difficult to ranges are difficult to distinguish, do the following read test.

If any abnormality is found in the above test, the problem is in the transaxle itself.

- (c) Connect the solenoid wire.
- (d) Cancel out DTC (See page DI–144).

DIAGNOSTIC TROUBLE CODE CHART

If a DTC is displayed during the DTC check, check the circuit listed for that code in the table below and proceed to the page given.

HINT:

*: •...Check engine warning light (CHK ENG) light up

DTC No. (See Page)	Detection Item	Trouble Area	*CHK ENG	Memory
P0500 (DI–163)	Vehicle Speed Sensor Malfunc- tion	 Open or short in No. 1 vehicle speed sensor circuit No. 1 vehicle speed sensor Combinationmeter Engine & ECT ECU Automatic transaxle assembly 	•	0
P0710 (DI–166)	Transmission Fluid Temperature Sensor Malfunction	 Open or short in ATF temperature sensor circuit ATF temperature sensor Engine & ECT ECU 	•	0
P0711 (DI–166)	Transmission Fluid Temperature Sensor Circuit Range/Perfor- mance Problem	 Open in ATF temperature sensor circuit ATF temperature sensor Engine & ECT ECU 	•	0
P0750 (DI–168)	Shift Solenoid A Malfunction (SL1 Solenoid Valve)	 SL1 solenoid valve is stuck open or closed Valve body is blocked up or stuck 	•	0
P0753 (DI–170)	Shift Solenoid A Electrical Mal- function (SL1 Solenoid Valve)	 Open or short in SL1 solenoid valve circuit SL1 solenoid valve Engine & ECT ECU 	•	0
P0755 (DI–168)	Shift Solenoid B Malfunction (SL2 Solenoid Valve)	 SL2 solenoid valve is stuck open or closed Valve body is blocked up or stuck 	•	0
P0758 (DI–170)	Shift Solenoid B Electrical Mal- function (SL2 Solenoid Valve)	 Open or short in SL2 solenoid valve circuit SL2 solenoid valve Engine & ECT ECU 	•	0
P0765 (DI–168)	Shift Solenoid D Malfunction (S4 Solenoid Valve)	 S4 solenoid valve is stuck open or closed Valve body is blocked up or stuck 	•	0
P0768 (DI–170)	Shift Solenoid D Electrical Mal- function (S4 Solenoid Valve)	 Open or short in S4 solenoid valve circuit S4 solenoid valve Engine & ECT ECU 	•	0
P0770 (DI–176)	Shift Solenoid E Malfunction (DSL Solenoid Valve)	 DSL solenoid valve is stuck open or closed Valve body is blocked up or stuck Lock-up clutch 	•	0
P0773 (DI–178)	Shift Solenoid E Electrical Mal- function (DSL Solenoid Valve)	 Open or short in DSL solenoid valve circuit DSL solenoid valve Engine & ECT ECU 	•	0
P1520 (DI–180)	Stop light switch circuit	 Open or short in stop light switch circuit Stop light switch Engine & ECT ECU 	•	0
P1725 (DI–181)	NT Revolution Sensor Circuit Malfunction (Input Turbine Speed Sensor)	 Open or short in input turbine speed sensor circuit Input turbine speed sensor Engine & ECT ECU 	•	0
P1730 (DI–183)	NC Revolution Sensor Circuit Malfunction (Counter Gear Speed Sensor)	 Open or short in counter gear speed sensor circuit Counter gear speed sensor Engine & ECT ECU 	•	0

DI0CH-10

DIAGNOSTICS – AUTOMATIC TRANSAXLE

P1760 (DI–185)	Linear Solenoid for Accumulator Pressure Control Circuit Mal- function (SLT Solenoid Valve)	Open or short in SLT solenoid valve circuit SLT solenoid valve Engine & ECT ECU	•	0
P1780 (DI–188)	Park/Neutral Position Switch Malfunction	 Short in neutral start switch circuit Neutral start switch Engine & ECT ECU 	•	0

PARTS LOCATION

DI610-03

TERMINALS OF ECU

DI84J-01

Below 1.5

E8	E	7 E6 E10	E9
		3 21 E 5 4 3 2 1 2 1 0 9 9 12 1 0 9 9 7 12 1 0 9 9 12 1 0 9 9 12 1 0 9 1	5 6 4 3 2 1) 14 13 2 1 1 10 7 10 22 16 7 10 7 10 D03442
Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
Cymbols (Terminals No.)	Wining Color	IG ON	10 – 14
SI 1+ (F8–20) ↔ SI 1– (F8–19)	I–B⇔I–W	1st or 2nd gear	10-14
		3rd or O/D gear	Below 1
		IG ON	Below 1
SL2+ (E8–9) ↔ SL2– (E8–8)	$R-B \leftrightarrow R-W$	1st or 2nd gear	10-14
- (, (,		3rd or O/D gear	Below 1
	R–I ⇔ Body	IG ON	Below 1
DSL (E8–7) \leftrightarrow Body ground	ground	Vehicle driving under lock–up range	10-14
NC ⁺ (E8–24) \leftrightarrow NC ⁻ (E8–23)	$R \leftrightarrow G$	Engine is running	Pulse signal is output Below $1 \leftrightarrow 4 - 5$
NT ⁺ (E6–5) \leftrightarrow NT ⁻ (E6–4)	L↔LG	Engine is running	Pulse signal is output Below $1 \leftrightarrow 4 - 5$
SLT^+ (E6–3) \leftrightarrow SLT^- (E6–2)	$G – B \leftrightarrow G$	IG ON	10-14
OD1 (E10–24) ↔ E1 (E7–17)	$Y – G \leftrightarrow BR$	IG ON	5-6
		IG ON and Shift lever L range	10-14
$L(E0-13) \leftrightarrow EI(E7-17)$	L−R ↔ DR	IG ON and Shift lever other than L range	Below 1
2 (E6 14) (> E1 (E7 17)		IG ON and Shift lever 2 range	10-14
$2(L0-14) \leftrightarrow L1(L7-17)$	G−1 ↔ BK	IG ON and Shift lever other than 2 range	Below 1
R (E6_8)⇔ E1 (E7_17)		IG ON and Shift lever R range	10 – 14
		IG ON and Shift lever other than R range	Below 1
D (E6_16) ↔ E1 (E7_17)		IG ON and Shift lever D range	10 – 14
		IG ON and Shift lever other than D range	Below 1
N (E6–7) ↔ E1 (E7–17)	R–₩ ⇔ BR	IG ON and Shift lever N range	10 – 14
		IG ON and Shift lever other than N range	Below 1
P (F6–9) ↔ F1 (F7–17)	G–₩ ↔ BR	IG ON and Shift lever P range	10-14
		IG ON and Shift lever other than P range	Below 1
ODLP (F9–9) ↔ F1 (F7–17)	R–W ↔ BR	IG ON and O/D OFF indicator light lights up	Below 1
		IG ON and O/D OFF indicator light goes off	10-14
ODMS (E6–12) ↔ E1 (E7–17)	GR–L ↔ BR	IG ON	10-14
		IG ON and press continuously O/D main switch	Below 1
THO (E7–13) ↔ E2 (E7–18)	$G-Y \leftrightarrow BR$	IG ON and ATF temperature 110°C (230°F)	Below 1
S4 (E6–1) ↔ E1 (E7–17)	$R-Y \leftrightarrow BR$	IG ON	Below 1
, , , , , ,		IG ON and O/D gear	10-14
STP (E9–15) ↔ E1 (E7–17)	$G-O \leftrightarrow BR$	IG ON and Brake pedal is depressed	7.5 – 14
		LIQ ON an d Busha a shall's asland.	I Data 4 C

IG ON and Brake pedal is released

DIAGNOSTICS – AUTOMATIC TRANSAXLE

	IG ON and accelerator pedal depressed	10-14	
"KD (E10−11) ↔ E1 (E7−17)	$G-W \leftrightarrow BR$	IG ON and accelerator pedal released	Below 1.0

PROBLEM SYMPTOMS TABLE

If a normal code is displayed during the diagnostic trouble code check but the trouble still occurs, check the circuits for each symptom in the order given in the charts on the following pages and proceed to the page given for troubleshooting.

The Matrix Chart is divided into 3 chapters.

Chapter 1: Electronic Circuit Matrix Chart

Chapter 2: On-vehicle Repair Matrix Chart

Chapter 3: Off-vehicle Repair Matrix Chart

- If the instruction "Proceed to next circuit inspection shown on matrix chart" is given in the flow chart for each circuit, proceed to the circuit with the next highest number in the table to continue the check.
- If the trouble still occurs even though there are no abnormalities in any of the other circuits, then check and replace the Engine & ECT ECU.

1. Chapter 1: Electronic Circuit Matrix Chart

Symptom	Suspect Area	See page
No up–shift (1st \rightarrow 2nd)	Engine & ECT ECU	IN-32
No up–shift (2nd \rightarrow 3rd)	Engine & ECT ECU	IN-32
	3. O/D main switch circuit	DI–197
No up–shift (3rd \rightarrow O/D)	4. O/D cancel signal circuit	DI–194
	5. Engine & ECT ECU	IN-32
No down–shift (O/D \rightarrow 3rd)	Engine & ECT ECU	IN-32
No down–shift (3rd \rightarrow 2nd)	Engine & ECT ECU	IN-32
No down–shift (2nd \rightarrow 1st)	Engine & ECT ECU	IN-32
No lock–up or No lock–up off	Engine & ECT ECU	IN-32
Shift point too high or too low	Engine & ECT ECU	IN-32
Up–shift to 2nd while in L range	Engine & ECT ECU	IN-32
Up–shift to 3rd while in L range	Engine & ECT ECU	IN-32
	1. O/D main switch circuit	DI–197
Op-shift to O/D from 3rd	2. Engine & ECT ECU	IN-32
Up–shift to O/D from 3rd while engine is cold	Engine & ECT ECU	IN-32
Harsh engagement (N \rightarrow D)	Engine & ECT ECU	IN-32
Harsh engagement (Lock–up)	Engine & ECT ECU	IN-32
Harsh engagement (Any driving range)	Engine & ECT ECU	IN-32
Pooracceleration	Engine & ECT ECU	IN-32
Large shift shock or engine stalls when starting off or stopping	Engine & ECT ECU	IN-32
No pattern coloct	1. Pattern select switch circuit	DI-192
	2. Engine & ECT ECU	IN-32
*No kick-down	1. Kick–down switch circuit	DI-200
	2. Engine & ECT ECU	IN-32

*: LHD only

Chapter 2: On–Vehicle Repair (★: U140F AUTOMATIC TRANSAXLE Repair Manual Pub. No. RM848E)

Symptom	Suspect Area	See page
Vehicle does not move in any forward range and reverse range	 Manual valve Throttle valve Primary regulator valve Off-vehicle repair matrix chart 	* * -
Vehicle does not move in R range	Off-vehicle repair matrix chart	_
No up–shift (1st \rightarrow 2nd)	 1. 1–2 shift valve 2. Off–vehicle repair matrix chart 	* -
No up–shift (2nd \rightarrow 3rd)	 2–3 shift valve Off–vehicle repair matrix chart 	* -
No up–shift (3rd \rightarrow O/D)	1. 3–4 shift valve 2. Off–vehicle repair matrix chart	* -
No down–shift (O/D \rightarrow 3rd)	3–4 shift valve	*
No down–shift (3rd \rightarrow 2nd)	2–3 shift valve	*
No down–shift (2nd \rightarrow 1st)	1–2 shift valve	*
No lock–up or No lock–up off	1. Lock–up relay valve 2. Off–vehicle repair matrix chart	* _
Harsh engagement (N \rightarrow D)	1. C ₁ accumulator 2. Off–vehicle repair matrix chart	* _
Harsh engagement (N \rightarrow R)	 C₂ accumulator No. 1 accumulator control valve Off–vehicle repair matrix chart 	* *
Harsh engagement (N \rightarrow L)	Low coast modulator valve	*
Harsh engagement (Lock-up)	1. Lock–up relay valve 2. Off–vehicle repair matrix chart	* -
Harsh engagement (1st \rightarrow 2nd \rightarrow 3rd \rightarrow O/D)	1. Throttle modulator valve 2. Cut back valve 3. Throttle valve	* *
Harsh engagement (2nd \rightarrow 3rd)	C ₂ accumulator	*
Harsh engagement (3rd \rightarrow O/D)	B ₀ accumulator	*
Harsh engagement (O/D \rightarrow 3rd)	1. C ₀ accumulator 2. B ₀ accumulator	*
Slip or shudder (Forward and reverse)	1. Throttle valve 2. Oil strainer 3. Off–vehicle repair matrix chart	* * -
No engine braking (1st: L range)	 Low coast modulator valve Off–vehicle repair matrix chart 	* -
No engine braking (2nd: 2 range)	1. 2nd coast modulator valve 2. Off–vehicle repair matrix chart	* -
*No kick–down	 1. 1–2 shift valve 2. 2–3 shift valve 3. 3–4 shift valve 4. Off–vehicle repair matrix chart 	* * * -

*: LHD only

Chapter 3: Off–Vehicle Repair (★: U140F AUTOMATIC TRANSAXLE Repair Manual Pub. No. RM848E)

Symptom	Suspect Area	See page
Vehicle does not move in any forward range and reverse range	1. Front and rear planetary gear 2. U/D planetary gear 3. U/D one–way clutch (F_2) 4. Forward clutch (C_1) 5. U/D brake (B_3)	* * *
Vehicle does not move in R range	 Front and rear planetary gear unit U/D planetary gear unit Direct clutch (C₂) U/D brake (C₃) 1st and reverse brake (B₂) 	* * * *
No up–shift (1st \rightarrow 2nd)	1. No. 1 one–way clutch (F ₁) 2. 2nd brake (B ₁)	*
No up–shift (2nd \rightarrow 3rd)	Direct clutch (C ₂)	*
No up–shift (3rd \rightarrow O/D)	U/D clutch (C ₃)	*
No lock–up or No lock–up off	Torque converter	*
Harsh engagement (N \rightarrow D)	 Forward clutch (C₁) U/D one-way clutch (F₂) No. 1 one-way clutch (F₁) 	* *
Harsh engagement (N \rightarrow R)	 Direct clutch (C₂) 1st and reverse brake (B₂) 	*
Harsh engagement (Lock–up)	Torque converter	*
Slip or shudder (Forward range: After warm–up)	 Torque converter Forward clutch (C₁) Direct clutch (C₂) U/D brake (C₃) No. 1 one-way clutch (F₁) U/D one-way clutch (F₂) 	* * * * *
Slip or shudder (R range)	1. Direct clutch (C ₂) 2. 1st and reverse brake (B ₂)	*
Slip or shudder (1st)	No. 1 one-way clutch (F ₁)	*
Slip or shudder (2nd)	1. U/D one–way clutch (F ₂) 2. 2nd brake (B ₁)	*
Slip or shudder (3rd)	Direct clutch (C ₂)	*
Slip or shudder (O/D)	U/D clutch (C ₃)	*
No engine braking (1st ~ 3rd: D range)	U/D brake (B ₃)	*
No engine braking (1st: L range)	1st and reverse brake (B ₂)	*
No engine braking (2nd: 2 range)	2nd brake (B ₁)	*
Poor acceleration (All range)	1. Torque converter 2. U/D planetary gear	*
Poor acceleration (O/D)	1. U/D clutch (C ₃) 2. U/D planetary gear	*
Large shift shock or engine stalls when starting off or stopping	Torque converter	*

CIRCUIT INSPECTION

DTC	P0500	Vehicle Speed Sensor Malfunction
-----	-------	----------------------------------

CIRCUIT DESCRIPTION

The vehicle speed sensor outputs a 4–pulse signal for every revolution of the rotor shaft, which is rotated by the transaxle output shaft via the driven gear. After this signal is converted into a more precise rectangular waveform by the waveform shaping circuit inside the combination meter, it is then transmitted to the Engine & ECT ECU. The Engine & ECT ECU determines the vehicle speed based on the frequency of these pulse signals.

DTC No.	DTC Detecting Condition	Trouble Area
P0500	No vehicle speed sensor signal to Engine & ECT ECU under conditions (a) and (b): (2 trip detection logic) (a) Neutral start switch is OFF (b) Vehicle is being driven	 Open or short in speed sensor circuit No. 1 vehicle speed sensor Combinationmeter Engine & ECT ECU
	Clutch or brake slips or gear is broken.	Automatic transaxle assembly

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester or OBD scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

Check operation of speedometer.

CHECK:

Drive the vehicle and check if the operation of the speedometer in the combination meter is normal. HINT:

The vehicle speed sensor is operating normally if the speedometer display is normal.

OK

2 Check for short in harness and connector between terminal SPD of Engine & ECT ECU connector and body ground.

PREPARATION:

Remove the glove compartment (See page BO–126). **CHECK:**

Check the continuity between terminal SPD of the Engine & ECT ECU connector and body ground.

OK:

No continuity (1 M Ω or higher)

NG

 \rangle Repair or replace harness or connector.

ОК

Check voltage between terminal SPD of Engine & ECT ECU connector and body 3 ground.

PREPARATION:

Remove the glove compartment (See page BO-126).

Turn the ignition switch ON.

CHECK:

Measure the voltage between terminal SPD of the Engine & ECT ECU connector and body ground.

Voltage: 0 – 5 V

Check for open in harness and connector between connector (IJ1) and Engine & ECT ECU (See page IN-32).

ΟΚ

page IN-32).

4	Check for open in harness and connector between connector (IJ1) and combina- tion meter (See page IN–32).	
	NG Repair or replace harness or connector.	
ОК		
Chec	k and replace Engine & ECT ECU (See	

DTC	P0710	Transmission Fluid Temperature Sensor Malfunction (ATF Temperature Sensor)
-----	-------	---

DTC	P0711	Transmission Fluid Temperature Sensor Cir-
		cuit Range/Performance Problem

CIRCUIT DESCRIPTION

The ATF temperature sensor converts fluid temperature into a resistance value which is input into the Engine & ECT ECU.

DTC No.	DTC Detecting Condition	Trouble Area
P0710	 Either a) or b) is detected for 0.5 sec. or more. (1 trip detection logic) a) Temp. sensor resistance is less than 79 Ω b) After the engine has been operating for 15 minutes or more, the resistance at the temp. sensor is more than 156 kΩ 	 Open or short in ATF temp. sensor ATF temp. sensor Engine & ECT ECU
P0711	Both (a) and (b) is detected. (a) After 12 seconds of the engine start, the temp. of the atmosphere and that of the engine coolant is more than -10 °C. (b) After a normal driving for over 20 minutes and 6.2 miles (10 km), the ATF temp. is less than 10 °C.	 Open in ATF temp. sensor circuit ATF temp. sensor Engine & ECT ECU

WIRING DIAGRAM

DI1O2-08

INSPECTION PROCEDURE

PREPARATION:

Disconnect the solenoid wire connector. (a)

- (b) Remove the oil pan.
- (c) Disconnect all solenoid valve connectors.

Remove transmission wire harness. (d)

CHECK:

Measure resistance between terminals 1 and 7 of solenoid connector at 25 °C (77 °F) and 110 °C (230 °F).

OK:

Resistance (Approx.): 25 °C (77 °F): 3.5 kΩ

110 °C (230 °F): 231 – 263 Ω

NG

Replace the ATF temperature sensor (transmission wire).

OK

Check harness and connector between ATF temperature sensor and Engine & 2 ECT ECU (See page IN-32).

NG Repair or replace the harness or connector. OK Check and replace the Engine & ECT ECU

DI-167

(See page IN-32).

DI0CS-11

DTC	P0750	Shift Solenoid A Malfunction (SL1 Solenoid Valve)

DTC	P0755	Shift Solenoid B Malfunction

DTC	P0765	Shift Solenoid D Malfunction (S4 Solenoid Valve)

SYSTEM DESCRIPTION

The Engine & ECT ECU uses signals from the vehicle speed sensor to detect the actual gear position (1st, 2nd, 3rd or O/D gear).

Then the Engine & ECT ECU compares the actual gear with the shift schedule in the Engine & ECT ECU memory to detect mechanical trouble of the shift solenoid valves and valve body.

DTC No.	DTC Detecting Condition	Trouble Area
P0750 P0755 P0765	During normal driving, the gear required by the Engine & ECT ECU does not match the actual gear (2 trip detection logic)	 SL1/SL2/S4 solenoid valve is stuck open or closed Valve body is blocked up or stuck

HINT:

Check the SL1 solenoid valve when DTC P0750 is output, check the SL2 solenoid valve when DTC P0755 is output and check S4 solenoid valve when DTC P0765 is output.

INSPECTION PROCEDURE

DI3JN-07

DTC	P0753	Shift Solenoid A Electrical Malfunction
		(SL1 Solenoid Valve)

DTC	P0758	Shift Solenoid B Electrical Malfunction

DTC P0768 Shift Solenoid D Electrical Malfunction (S4 Solenoid Valve)	
--	--

CIRCUIT DESCRIPTION

Shifting from 1st to O/D is performed in combination with ON and OFF of the SL1 and SL2 solenoid valves controlled by Engine & ECT ECU. If an open or short circuit occurs in either of the solenoid valves, the Engine & ECT ECU controls the remaining normal solenoid valve to allow the vehicle to be operated smoothly (Fail safe function).

DTC No.	DTC Detecting Condition	Trouble Area
P0753 P0758	The Engine & ECT ECU checks for an open or short circuit in the SL1 and SL2 solenoid valves. (a) When the solenoid is energized, the duty ratio exceed 75 % (b) When the solenoid is not energized, the duty ratio is less than 3 %.	
P0768	The Engine & ECT ECU checks for an open or short circuit in the S4 solenoid valve circuit when it changes. The Engine & ECT ECU records DTC P0768 if condition (a) or (b) is detected. (a) When the solenoid is energized, the solenoid resistance is 8 Ω or less and is counted. (b) When the solenoid is not energized, the solenoid resistance is 100 k Ω or more and is counted.	 Open or short in SL1/SL2/S4 solenoid valve circuit SL1/SL2 S4 solenoid valve Engine & ECT ECU

HINT:

Check the SL1 solenoid valve when DTC P0753 is output, check the SL2 solenoid valve when DTC P0758 is output and check the S4 solenoid valve when DTC P0768 is output.

Fail safe function:

If either of the shift solenoid valve circuits develops an open or short, the Engine & ECT ECU turns the other solenoid ON and OFF to shift to the gear positions shown in the table below. The Engine & ECT ECU also turns the DSL solenoid valve OFF at the same time. If both solenoids are malfunction, hydraulic control cannot be performed electronically and must be done manually.

Manual shifting as shown in the following table must be done (In the case of a short circuit, the Engine & ECT ECU stops sending current to the short circuited solenoid).

NORMAL				SL1 SOLENOID MALFUNCTIONING							SL2 SOLENOID				
	NO			D	riving a	at 3rd o	r O/D	C) riving a	at 1st c	or 2nd	MALFUNCTIONING			
Sole	enoid V	alve	Caar	Sol	enoid \	/alve	Coor	Sole	enoid V	alve	Caar	Sole	enoid V	alve	Coor
SL1	SL2	S4	Gear	SL1	SL2	S4	Gear	SL1	SL2	S4	Gear	SL1	SL2	S4	Gear
ON	ON	OFF	1st	x	ON V OFF	OFF	3rd	Х	ON	OFF	2nd	ON ▼ OFF	х	OFF	3rd
OFF	ON	OFF	2nd	х	ON OFF	OFF	3rd	Х	ON	OFF	2nd	OFF	Х	OFF	3rd
	OFF	OFF	3rd	х	OFF	OFF	3rd	х	OFF ∳ ON	OFF ∳ ON	3rd		Х	OFF	3rd
	OFF	ON	O/D	x	OFF	ON	O/D	х	OFF V	ON	3rd		х	ON	O/D

S4	4 SOLE	NOID		SL1 AND SL2 SOLENOID				D SL1 AND S4 SOLENOID MALFUNCTIONING						G	
M	ALFUN	ICTION	NING	MALF	UNCT	IONING	G	Driving at 3rd or O/D Driving at 1					at 1st o	r 2nd	
Sole	enoid V	alve	Caar	Sol	enoid \	/alve	Caar	Sol	enoid V	alve	Coor	Sol	enoid \	/alve	Caar
SL1	SL2	S4	Gear	SL1	SL2	S4	Gear	SL1	SL2	S4	Gear	SL1	SL2	S4	Gear
ON	ON	Х	1st	x	х	OFF	3rd	Х	ON ▼ OFF	Х	3rd	х	ON	Х	2nd
OFF	ON	Х	2nd	x	x	OFF	3rd	х	ON ► OFF	Х	3rd	x	ON	Х	2nd
	OFF	Х	3rd	x	x	OFF	3rd	х	OFF	Х	3rd	x	OFF • ON	Х	2nd
	OFF	х	3rd	x	x	ON	O/D	х	OFF	х	3rd	x		х	2nd

SL2 A MALFI	ND S4 UNCTI	SOLE ONING	NOID G	SL1, SL2 AND S4 SOLENOID MALFUNCTIONING				
Sole	enoid V	alve	Coor	Sol	enoid \	/alve	Coor	
SL1	SL2	S4	Gear	SL1	SL2	S4	Gear	
ON ∳ OFF	Х	х	3rd	x	х	Х	3rd	
OFF	х	х	3rd	x	х	Х	3rd	
	х	х	3rd	x	х	Х	3rd	
	Х	Х	3rd	x	Х	Х	3rd	

WIRING DIAGRAM

INSPECTION PROCEDURE

Measure resistance between terminals of Engine & ECT ECU.

PREPARATION:

Disconnect the connector from Engine & ECT ECU.

CHECK:

- (a) Measure resistance between terminal SL1+ and SL2- of Engine & ECT ECU connector.
- (b) Measure resistance between terminal SL2+ and SL2- of Engine & ECT ECU connector.
- Measure resistance between terminal S4 of Engine & ECT ECU connector and body ground.

OK:

Resistance:

SL1+ – SL1–: 5.3 \pm 0.2 Ω SL2+ – SL2–: 5.3 \pm 0.2 Ω

S4 – Body ground: 13 ± 2 Ω

OK

Check and replace the Engine & ECT ECU (See page IN-32).

NG

2 Check harness and connector between Engine & ECT ECU and automatic transaxle solenoid connector.

PREPARATION:

Disconnect the solenoid connector from the automatic transaxle.

CHECK:

- (a) Check the harness and connector between terminal SL1+ or SL1– of Engine & ECT ECU and terminal SL1+ or SL1– of solenoid connector.
- (b) Check the harness and connector between terminal SL2+ or SL2– of Engine & ECT ECU and terminal SL2+ or SL2– of solenoid connector.
- (c) Check the harness and connector between terminal S4 of Engine & ECT ECU and terminal S4 of solenoid connector.

OK:

There is no open and no short circuit.

Repair or replace the harness or connector.

OK

3	Check SL1, SL2 or S4 solenoid valve (See page DI–168).							
		NG	Replace the solenoid valve.					
ОК								
Repai	r or replace the solenoid wire.							

DI3JO-06

DTC P0770 Shift Solenoid E Malfunction (DSL Solenoid Valve)

SYSTEM DESCRIPTION

The Engine & ECT ECU uses the signals from the throttle position sensor, Air–flow meter and crankshaft position sensor to monitor the engagement condition of the lock–up clutch.

Then the Engine & ECT ECU compares the engagement condition of the lock–up clutch with the lock–up schedule in the Engine & ECT ECU memory to detect mechanical trouble of the DSL solenoid valve, valve body and torque converter.

DTC No.	DTC Detecting Condition	Trouble Area
P0770	Lock–up does not occur when driving in the lock–up range (normal driving at 80 km/h [50 mph]), or lock–up remains ON in the lock–up OFF range. (2 trip detection logic)	 DSL solenoid valve is stuck open or closed Valve body blocked up or stuck Lock–up clutch

INSPECTION PROCEDURE

1 Check DSL solenoid valve operation.

PREPARATION:

- (a) Remove the oil pan.
- (b) Remove the DSL solenoid valve.

CHECK:

- (a) Applying 490 kPa (5 kgf/cm², 71 psi) of compressed air, check that the solenoid valve does not leak air.
- (b) When battery positive voltage is supplied to the shift solenoid valve, check that the solenoid valve opens.

OK:

(a) Solenoid valve does not leak air.(b) Solenoid valve opens.

NG

Replace the DSL solenoid valve.

ОΚ

2 Check valve body (See page DI–160). NG Repair or replace the valve body. OK OK Replace the torque converter (See page DI–192).

DI0CV-13

DTC	P0773	Shift Solenoid E Electrical Malfunction (DSLSolenoid Valve)

CIRCUIT DESCRIPTION

The DSL solenoid value is turned ON and OFF by signals from the Engine & ECT ECU to control the hydraulic pressure acting on the lock–up relay value, which then controls operation of the lock–up clutch.

DTC No.	DTC Detecting Condition	Trouble Area
P0773	 Either (a) or (b) are detected for 1 time. (2 trip detection logic) (a) Solenoid resistance is 8 Ω or less short circuit when solenoid is energized. (b) Solenoid resistance is 100 kΩ or more open circuit when solenoid is not energized. 	 Open or short in DSL solenoid valve circuit DSL solenoid valve Engine & ECT ECU

Fail safe function:

If the Engine & ECT ECU detects a malfunction, it turns the DSL solenoid valve OFF.

WIRING DIAGRAM

Check and replace or repair the solenoid wire.

DI0CW-07

DTC	P1520	Stop Light Switch Signal Malfunction
-----	-------	--------------------------------------

CIRCUIT DESCRIPTION

The purpose of this circuit is to prevent the engine from stalling, while driving in lock-up condition, when brakes are suddenly applied.

When the brake pedal is operated, this switch sends a signals to Engine & ECT ECU. Then the Engine & ECT ECU cancels operation of the lock–up clutch while braking is in progress.

DTC No.	DTC Detecting Condition	Trouble Area
P1520	No stop light switch signal to Engine & ECT ECU during driv- ing. (2 trip detection logic)	Open or short in stop light switch circuit Stop light switch Engine & ECT ECU

WIRING DIAGRAM

See page DI-111.

INSPECTION PROCEDURE

See page DI-111.

DI-1	81

DI3JP-05	

DTC P1725 NT Revolution Sensor Circuit Malfunction (Input Turbine Speed Sensor)

CIRCUIT DESCRIPTION

This sensor detects the rotation speed of the input turbine. By comparing the input turbine speed signal (NT) and the counter gear speed sensor signal (NC), the Engine & ECT ECU detects the shift timing of the gears and appropriately controls the engine torque and hydraulic pressure in response to various conditions, thus performing smooth gear shifting.

DTC No.	DTC Detecting Condition	Trouble Area
P1725	The Engine & ECT ECU detects conditions (a), (b), (c) and (d) continuity for 5 secs or more. (1 trip detection logic) (a) Vehicle speed: 50 km/h (20 mph) or more (b) 2nd, 3rd or O/D gear (c) Solenoid valves and neutral start switch are normal (d) NT < 300 rpm	 Open or short in input turbine (NT) speed sensor circuit Input turbine (NT) speed sensor Engine & ECT ECU

Check and repair the harness and connector between Engine & ECT ECU and input turbine speed sensor (See page IN–32).

DTC	P1730	NC Revolution Sensor Circuit Malfunction (Counter Gear Speed Sensor)
-----	-------	---

CIRCUIT DESCRIPTION

This sensor detects the rotation speed of the counter gear. By comparing the counter gear speed signal (NC) and the direct clutch speed sensor signal (NT), the Engine & ECT ECU detects the shift timing of the gears and appropriately controls the engine torque and hydraulic pressure in response to various conditions, thus performing smooth gear shifting.

DTC No.	DTC Detecting Condition	Trouble Area
P1730	The Engine & ECT ECU detects conditions (a), (b), (c) and (d) continuity for 5 secs or more. (1 trip detection logic) (a) Vehicle speed: 50 km/h (20 mph) or more (b) 2nd, 3rd or O/D gear (c) Solenoid valves and neutral start switch are normal (d) NC < 300 rpm	 Open or short in NC revolution sensor circuit Counter gear speed sensor Engine & ECT ECU

WIRING DIAGRAM

DI3JQ-06

between Engine & ECT ECU and counter gear speed sensor (See page IN–32).

DI109-17

DTC

ON

OFF

P1760

Linear Solenoid for Line Pressure Control Circuit Malfunction (SLT)

cycle

CIRCUIT DESCRIPTION

The throttle pressure that is applied to the primary regulator valve (which modulates line pressure) causes the SLT solenoid valve, under electronic control, to precisely and minutely modulate and generate line pressure according to the accelerator pedal effort, or engine power output detected.

This reduces the function of line pressure and provides smooth shifting characteristics.

Upon receiving the throttle valve opening angle signal, Engine & ECT ECU controls the line pressure by sending a predetermined (*) duty ratio to the solenoid valve, modulating the line pressure, generating throttle pressure.

(*) Duty Ratio

BE4056

The duty ratio is the ratio of the period of continuity in one cycle. For example, if A is the period of continuity in one cycle, and B is the period of non–continuity, then

Duty Ratio =
$$\frac{A}{A+B} \times 100$$
 (%)

DTC No.	DTC Detecting Condition	Trouble Area
	a) or b) condition below are detected 1 seconds or more.	Open or short in SLT solenoid valve circuit
P1760	a) SLT ⁻ terminal: 0 V	SLT solenoid valve
	b) SLT ⁻ terminal: 12 V	Engine & ECT ECU

Reference:

Waveform between terminals SLT⁺ and SLT⁻during engine idling.

LEXUS RX300 (RM785E)

IN-32).

DI0CZ-18

DTC	P1780	Park/Neutral Position Switch Malfunction (Neutral Start Switch)
-----	-------	--

CIRCUIT DESCRIPTION

The neutral start switch detects the shift lever position and sends signals to the Engine & ECT ECU. The Engine & ECT ECU receives signals (NSW, R, 2 and L) from the neutral start switch. When the signal is not sent to the Engine & ECT ECU from the neutral start switch, the Engine & ECT ECU judges that the shift lever is in D range.

DTC No.	DTC Detection Condition	Trouble Area
P1780	 When driving under conditions (a) and (b) for 30 seconds or more, the neutral start switch is ON (N range). (2 trip detection logic) (a) Vehicle speed: 70 km/h (44 mph) or more (b) Engine speed: 1,500 – 2,500 rpm 	 Short in neutral start switch circuit Neutral start switch Engine & ECT ECU

1

Read NSW, REVERSE, 2ND and LOW signals.

When using hand-held tester. PREPARATION:

- (a) Remove the DLC3 cover.
- (b) Connect a hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and hand-held tester main switch ON.

CHECK:

Shift lever into the P, R, N, 2 and L ranges, and read the NSW, REVERSE, 2ND and LOW signals on the hand-held tester.

OK:

Shiftrange	Signal
2	$2ND\:OFF\toON$
L	$LOWOFF\toON$
R	$REVERSE\:OFF\toON$
P, N	$NSWOFF\toON$

When not using hand-held tester. PREPARATION:

Turn the ignition switch ON.

CHECK:

Measure voltage between terminals NSW, 2, L and R of Engine & ECT ECU and body ground when the shift lever is shifted to the following ranges.

OK:

Shiftrange	Tester connection	Specified value
Р	P – Body ground	Battery voltage
R	R – Body ground	Battery voltage
Ν	N – Body ground	Battery voltage
D	D – Body ground	Battery voltage
2	2 – Body ground	Battery voltage
L	L– Body ground	Battery voltage

HINT:

*: The voltage will drop slightly due to lighting up of the back up light.

Proceed to next circuit inspection shown on matrix chart (See page DI-160).

Jack up the vehicle.

Remove the neutral start switch.

PREPARATION:

(a) (b)

2 Check neutral start switch.

CHECK: Check continuity between each terminal shown below when the shift lever is moved to each range.							
Shiftrange	Terminal No.	to continuity					
Р	1-3	6-9					
R	2-3	-					
N	3-5	6 – 9					
D	3-7	-					
2	3-4	-					
L	3-8	_					

OK:

There is continuity.

Replace the neutral start switch.

OK

3 Check harness and connector between battery and neutral start switch, neutral start switch and Engine & ECT ECU (See page IN–32).

Repair or replace the harness and connector.

ΟΚ

Check and replace the Engine & ECT ECU (See page IN–32).

DI84L-01

Pattern Select Switch Circuit

CIRCUIT DESCRIPTION

When 2nd start mode is selected with the pattern select switch, the Engine & ECT ECU controls the solenoid valves and the transmission starts from 2nd gear.

In D range, the transmission automatically shifts up through 3rd to O/D as usual.

In 2nd range, the transmission is held in 2nd gear.

PREPARATION:

Disconnect the pattern select switch connector.

CHECK:

Check continuity between terminals 1 and 2 of pattern select switch connector when the select switch is set to SNOW positions.

OK:

Switch condition	Tester connection	Specifiedcondition
SNOW	3-4	Continuity

If the continuity is not as specified, replace the switch.

DI0D0-07

O/D Cancel Signal Circuit

CIRCUIT DESCRIPTION

While driving uphill with cruise control activated, in order to minimize gear shifting and provide smooth cruising overdrive may be prohibited temporarily under some condition.

The cruise control Engine & ECT ECU sends O/D cut signals to the Engine & ECT ECU as necessary and the Engine & ECT ECU cancels overdrive shifting until these signals are discontinued.

1

Check voltage between terminal OD1 of Engine & ECT ECU and body ground.

PREPARATION: Turn the ignition switch ON.

CHECK:

Measure voltage between terminal OD1 of Engine & ECT ECU and body ground.

OK: Voltage: 10 – 14 V

Proceed to next circuit inspection shown on matrix chart (See page DI–160).

NG

2 Check voltage between terminal OD of cruise control ECU harness side connector and body ground.

PREPARATION:

- (a) Disconnect the cruise control ECU connector.
- (b) Turn the ignition switch ON.

CHECK:

OK

Measure voltage between terminal OD of cruise control ECU harness side connector and body ground.

OK:

Voltage: 10 – 14 V

Check and replace the cruise control ECU.

NG

3	Check harness and connector between cruise control ECU and Engine & ECT ECU (See page IN–32).						
	NG Repair or replace the harness or connector.						
ОК							
Chec (See	k and replace the Engine & ECT ECU page IN–32).						

DI1AW-09

O/D Main Switch & O/D OFF Indictor Light Circuit

CIRCUIT DESCRIPTION

The O/D main switch is a momentary type switch. When pressing the O/D main switch, the O/D OFF indicator light lights up and Engine & ECT ECU prohibits shifting to O/D, and when pressing it again, the O/D OFF indicator light goes off and Engine & ECT ECU allows shifting to O/D. Turning the IG switch OFF will reset the O/D OFF indicator light.

1	Check operation of O/D mai	n switch.	
		PREPARATION: Turn the ignition switch ON. CHECK: (a) Check O/D OFF indicator li pushed in to ON. (b) Check O/D OFF indicator li pushed again. OK:	ight when O/D main switch is ight when O/D main switch is
		(a) O/D OFF indicator ligh (b) O/D OFF indicator ligh OK Proceed to next ins toms problem tables	t lights up. at goes off. pection shown on symp- (See page DI–160).
NG			
2	Check and replace the com	pination meter (See page BE–	68).
		NG Replace the combin	ation meter.
ОК			
3	Check O/D main switch.		
1 ~		PREPARATION: Disconnect the O/D main switch CHECK: Check continuity between termination connector. OK:	connector. als 1 and 3 of O/D main switch
3 -		O/D main switch condition	Specified condition
	D07404	Press continuously O/D main switch	Continuity
	201431	Release O/D main switch NG Replace and repair C	No continuity

LEXUS RX300 (RM785E)

5 Check voltage between terminal ODLP of Engine & ECT ECU and body ground. **PREPARATION:** ON Ì (a) Disconnect the connector of Engine & ECT ECU. (b) Turn the ignition switch ON. CHECK: DLP Check voltage between terminal ODLP of Engine & ECT ECU and body ground. OK: Voltage: 7.5 - 14 V N D07185 Check and replace the Engine & ECT ECU (See OK page IN–22). NG

Check and replace harness and connector between combination meter and Engine & ECT ECU, O/D main switch and Engine & ECT ECU, O/D main switch and body ground (See page IN–22).

DI620-03

Kick-down Switch Circuit (LHD)

CIRCUIT DESCRIPTION

The kick–down switch is turned ON when the accelerator pedal is depressed to the full throttle and sends signals to Engine & ECT ECU.

When the kick–down switch is turned ON, the Engine & ECT ECU controls gear shifting according to the programmed shift diagrams.

If a short circuit develops in the kick–down switch, the Engine & ECT ECU disregards the kick–down signals and controls shifting at the normal shift points.

Check KICK DOWN SW signal.

When using hannd-held tester: **PREPARATION**:

- (a) Remove the DLC3 cover.
- (b) Connect a hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and hand-held tester main switch ON.

CHECK:

Read the KICK DOWN SW signal on the hand-held tester. **OK:**

Acceleratorpedal	KICK DOWN SW signal		
Fully depressed (kick-down SW is ON)	ON		
Released (kick-down SW is OFF)	OFF		

When not using hand-held tester:

PREPARATION:

Turn the ignition switch ON.

CHECK:

Measure voltage between terminal KD of Engine & ECT ECU connector and body ground when accelerator pedal is fully depressed or not.

OK:

Accelerator pedal	Voltage
Fully depressed (kick-down SW is ON)	Below 1 V
Released (kick-down SW is OFF)	10 – 14 V

Proceed to next circuit inspection shown in problem symproms table (See page DI–160).

NG

DI-202

2	Check kick–down switch.		
		PREPARATION: Disconnect the kick-down swite CHECK: Check continuity at each termina tor. OK:	ch connector. al of kick–down switch connec-
	2	Kick-down switch	Specified condition
,		ON	No continuity
	D01519	OFF	Continuity
ОК			
3	Check harmess and connec switch, kick–down switch ar	tor between Engine & ECT E nd body ground (See page IN	CU and kick–down I–32).
		NG Repair or replace th	e harness or connector.
ОК			
Checl (See	k and replace Engine & ECT EC page IN–32).	U	

ABS & BA & TRC & VSC SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshoot in accordance with the procedure on the following pages.

Fail safe function:

When a failure occurs in the ABS & BA & TRC & VSC system, the respective ABS & VSC warning light is lit and the operation of ABS & BA & TRC & VSC is prohibited. (In addition to this, when the failure which disables the EBD operation occurs, the brake warning light is lit as well and the EBD operation is prohibited).

DI0W3-08

CUSTOMER PROBLEM ANALYSIS CHECK

ABS & BA & TRC & VSC Check Sheet

Inspector's . Name

			Registration No.			
Customer's Name			Registration Date	1	1	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km miles

Date Problem First Occurred		1		1
Frequency Problem Occurs	Continuous		Intermittent (times a day)

	ABS does not operate.						
	□ ABS does not o	ABS does not operate efficiently.					
	□ TRC does not operate. (Wheels spin when starting rapidly.)						
	VSC does not c	operate. (Wheels sideslip at the time of sharp turning.)					
Symptoms	BA does not operate.						
	ABS Warning Light Abnormal	Remains ON Does not Light Up					
	VSC Warning Light Abnormal	Remains ON Does not Light Up					
	SLIP Indicator Light Abnormal	Remains ON Does not Light Up					
	Brake Warning Light Abnormal	Remains ON Does not Light Up					
	· · · ·						
Check Item	Malfunction Indicator Light	Normal Does not Light Up					

DTC Check	1st Time	Normal Code	Malfunction Code (Code)
	2nd Time	Normal Code	Malfunction Code (Code)

DI0W4-06

PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Check the warning lights.
 - (1) Release the parking break pedal.
 - (2) When the ignition switch is turned ON, check that the ABS warning light, VSC warning light, brake warning light^{*1} and SLIP indicator light goes on for approx. 3 seconds.

*1: w/ EBD only

HINT:

- When the parking brake is applied or the level of the brake fluid is low, the brake warning light is lit.
- If the indicator check result is not normal, proceed to troubleshooting for the ABS warning light circuit, VSC warning light circuit, brake warning light circuit or SLIP indicator light circuit.

Trouble Area	See page
ABS warning light circuit	DI–287
VSC warning light circuit	DI–284
Brake warning light circuit	DI–290
SLIP indicator light circuit	DI-292

- (b) In case of not using hand-held tester: Check the DTC.
 - Using SST, connect terminals Tc and CG of DLC3.SST 09843–18040
 - (2) Turn the ignition switch ON.
 - (3) Read the DTC from the ABS warning light and VSC warning light on the combination meter.

HINT:

• If no code appears, inspect the diagnostic circuit, ABS warning light circuit or VSC waning light circuit.

Trouble Area	See page
Tc terminal circuit	DI–298
ABS warning light circuit	DI-287
VSC warning light circuit	DI-284

DIAGNOSTICS - ABS & BA & TRC & VSC SYSTEM

- As an example, the blinking patterns for normal code and codes 11 and 21 are shown on the left.
 - (4) Codes are explained in the code table on page DI–213.
 - (5) After completing the check, disconnect terminals Tc and CG, and turn off the display.

If 2 or more malfunction codes are identified at the same time, the lowest numbered DTC will be displayed 1st.

- (c) In case of using hand-held tester:
 - Check the DTC.
 - (1) Hook up the hand-held tester to the DLC3.
 - (2) Turn the ignition switch ON.
 - (3) Read the DTC by following the prompts on the tester screen.

HINT:

Please refer to the hand-held tester operator's manual for further details.

- (d) In case of not using hand-held tester: Clear the DTC.
 - (1) Using SST, connect terminals Tc and CG of DLC3.
 - SST 09843-18040
 - (2) Turn the ignition switch ON.
 - (3) Clear the DTC stored in ECU by depressing the break pedal 8 times or more within 5 seconds.
 - (4) Check that the warning light shows the normal code.
 - (5) Remove the SST from the terminals of DLC3.
 - SST 09843-18040

HINT:

Cancellation cannot be done by removing the battery cable or ECU–IG fuse.

- In case of using hand-held tester: Clear the DTC.
 - (1) Hook up the hand-held tester to the DLC3.
- (2) Turn the ignition switch ON.
- (3) Operate the hand-held tester to erase the codes.(See hand-held tester operator's manual.)

2. SENSOR SIGNAL CHECK (TEST MODE)

HINT:

If the ignition switch is turned from ON to ACC or LOCK during test mode, DTC will be erased.

- (a) In case of not using hand–held tester: Check the ABS sensor signal.
 - (1) Turn the ignition switch OFF.
 - (2) Using SST, connect terminals Ts and CG of DLC3.
 - SST 09843-18040
 - (3) Start the engine.
 - (4) Check that the ABS warning light blinks.

HINT:

If the ABS warning light does not blink, inspect the ABS warning light circuit and Ts terminal circuit (See page DI–287, DI–300).

- (5) Keep the vehicle in the stationary condition on the flat place for 1 sec. or more.
- (6) Keeping the vehicle in the stationary condition and the break pedal in free condition for 1 sec. or more, continue to depress the break pedal with 147 N (15 kgf, 33 lbf) or more for 1 sec. or more.
- (7) Keeping the vehicle in the stationary condition, depress the brake pedal with 98 N (10 kgf, 22 lbf) or more quickly.

HINT:

The above mentioned condition comes into existence, the ABS warning light comes ON for 3 seconds.

(8) Drive vehicle straight forward.

When driving the vehicle at the speed faster than 45 km/h (28 mph) for several seconds, check that the ABS warning light comes off.

HINT:

There is a case that the sensor check is not completed if the vehicle has its wheels spun or its steering wheel steered during this check.

- (9) Stop the vehicle.
- (10) Using SST, connect terminals Tc and CG of DLC3.
- SST 09843-18040
- (11) Read the number of blinks of the ABS warning light.

HINT:

- See the list of DTC shown in the next page.
- If every sensor is normal, a normal code is output (A cycle of 0.25 sec. ON and 0.25 sec. OFF is repeated).
- If 2 or more malfunctions are indicated at the same time, the lowest numbered code will be displayed 1st.

- (12) After doing the check, disconnect terminals Ts and CG, Tc and CG of DLC3, and turn the ignition switch OFF.
- SST 09843-18040

- (b) In case of using hand–held tester: Check the ABS sensor signal.
 - Hook up the hand-held tester to the DLC3.
 - (1) Hook up the hand held tester to the DEC(2) Do step (3) to (9) on the previous page.
 - (3) Read the DTC by following the prompts on the tester screen.

HINT:

Please refer to the hand-held tester operator's manual for further details.

Code No.	Diagnosis	Trouble Area
C1271 / 71	Low output voltage of right front speed sensor	Right front speed sensorSensor installationSensor rotor
C1272 / 72	Low output voltage of left front speed sensor	Left front speed sensor Sensorinstallation Sensor rotor
C1273/73	Low output voltage of right rear speed sensor	Right rear speed sensorSensor installationSensor rotor
C1274 / 74	Low output voltage of left rear speed sensor	Left rear speed sensorSensor installationSensor rotor
C1275 / 75	Abnormal change in output voltage of right front speed sen- sor	Right front speed sensor rotor
C1276/76	Abnormal change in output voltage of left front speed sen- sor	Left front speed sensor rotor
C1277 / 77	Abnormal change in output voltage of right rear speed sen- sor	Right rear speed sensor rotor
C1278/78	Abnormal change in output voltage of left rear speed sensor	Left rear speed sensor rotor
C1279/79	Deceleration sensor is faulty	Deceleration sensor Sensorinstallation
C1281/81	Master cylinder pressure sensor output signal is faulty	Master cylinder pressure sensor

DTC of ABS sensor check function:

- (c) In case of not using hand-held tester: Check the VSC sensor signal.
 - (1) Turn the ignition switch OFF.
 - (2) Check that the shift lever position is at P range, turn the steering wheel to the neutral position.
 - (3) Using SST, connect terminals Ts and CG of DLC3.
 - SST 09843-18040
 - (4) Start the engine.

(5) Check that the VSC warning light blinks.

HINT:

If the VSC warning light does not blink, inspect the VSC warning light circuit and Ts terminal circuit (See page DI–284, DI–300).

(6) After a new ECU installed, the first time only: Start the engine and keep the vehicle in the stationary condition on the flat place for 3 sec. or more, it's installed the zero point calibration of the yaw rate sensor.

LEXUS RX300 (RM785E)

(7) Check the steering angle sensor. Turn the steering wheel to either left or right to the full lock position, from the vehicle stationary condition, and turn back the steering wheel to the neutral position.

(8) Check the yaw rate sensor.

Shift the shift lever to the D range and drive the vehicle at the vehicle speed of approx. 5 km/h (3 mph), turn the steering wheel either to left or right 90° or more, and maintain 180° circular drive for the vehicle.

Stop the vehicle and shift the shift lever to the P range, check that the VSC buzzer sounds for 3 sec.

HINT:

- If the VSC buzzer sounds, the sensor check is in normal completion.
- If the VSC buzzer does not sound, check the VSC buzzer circuit (See page DI–295), then do the sensor check again.
- If the VSC buzzer still won't sound, there is a malfunction in the VSC sensor, so check the DTC.
- Drive the vehicle in a 180° circle. At the end of the turn, the direction of the vehicle should be within 180°±5° of its start position.
- Do not spin the wheels.
 - (9) Using SST, connect terminals Tc and CG of DLC3.SST 09843–18040

(10) Read the number of blinks of the VSC warning light. HINT:

- See the list of DTC shown at in the next page.
- If every sensor is normal, a normal code is output. (A cycle of 0.25 sec. ON and 0.25 sec. OFF is repeated.)
- If 2 or more malfunctions are indicated at the same time, the lowest numbered code will be displayed 1st.

- (11) After doing the check, disconnect the SST from terminals Ts and CG, Tc and CG of DLC3 and turn the ignition switch OFF.
- SST 09843-18040

- (d) In case of using hand-held tester:
 - Check the VSC sensor signal.
 - (1) Hook up the hand-held tester to the DLC3.
 - (2) Do steps (2) and (4) to (8) on the previous pages.
 - (3) Read the DTC by following the prompts on the tester screen.

HINT:

Please refer to the hand-held tester operator's manual for further details.

DTC of VSC sensor check function:

Code No.	Diagnosis	Trouble Area
C0371/71	Yaw rate sensor output signal malfunction	Yaw rate sensor Yaw rate sensor circuit
C1208/72	Steering angle sensor output signal malfunction	Steering angle sensorSteering angle sensor circuit

3. YAW RATE SENSOR ZERO POINT CALIBRATION HINT:

When replacing the yaw rate sensor assembly or ECU, make sure to perform yaw rate sensor zero point calibration.

Perform yaw rate sensor zero point calibration.

(1) Shift the shift lever in P range and turn the ignition switch ON, repeat connecting and releasing Ts and CG terminals of DLC3 4 times or more for 8 sec.

HINT:

When operation (1) is performed, DTC is deleted.

(2) Do not move the vehicle for 15 sec. or more. HINT:

At this time VSC warning light is on for 15 sec. and goes off, and zero point calibration for yaw rate sensor is completed.

4. DECELERATION SENSOR OPERATION DIAGNOSIS SYSTEM

CAUTION:

While checking the deceleration sensor operating diagnosis system, ABS does not work and break system works as a conventional break system.

DIAGNOSTICS – ABS & BA & TRC & VSC SYSTEM

DECELERATION SENSOR CHECK

- (a) Connect 3 dry batteries of 1.5 V in series.
- (b) Connect VGS terminal to the batteries' positive (+) terminal, and GGND terminal to the batteries' negative (–) terminal, apply about 4.5 V between VGS – GGND terminals.

NOTICE:

- When inspecting deceleration sensor, remove it with the bracket together. Do not remove the sensor from the bracket. When replacing deceleration sensor, replace the sensor with it assembled to the bracket assembly.
- Do not apply voltage of 6 V or more to terminals VGS and GGND.
- (c) Check the output voltage of GL1 and GL2 terminals.

Symbols	Condition	Standard Value
GL1	Horizontal	About 2.3 V
GL1	Lean forward	0.4 V – about 2.3 V
GL1	Lean rearward	About 2.3 V – 4.1 V
GL2	Horizontal	About 2.3 V
GL2	Lean forward	About 2.3 V – 4.1 v
GL2	Lean rearward	0.4 V – about 2.3 V

HINT:

- If the sensor is tilted too much it may show the wrong value.
- If dropped, the sensor should be replaced with a new one.
- The sensor removed from the vehicle should not be placed upside down.

DIAGNOSTIC TROUBLE CODE CHART

NOTICE:

Before replacing or removing the part, turn the ignition switch OFF. HINT:

- Using SST 09843–18040, connect the terminals Tc and CG of DLC3.
- If any abnormality is not found when inspecting parts, inspect the ECU.
- If a malfunction code is displayed during the DTC check, check the circuit listed for that code. For details of each code, turn to the page referred to under the "See page" for respective "DTC No." in the DTC chart.

DTC chart of ABS:

DTC No. (See Page)	Detection Item	Trouble Area
C0200 / 31*1 (DI–222)	Right front wheel speed sensor signal malfunction	
C0205 / 32*1 (DI–222)	Left front wheel speed sensor signal malfunction	 Right front, left front, right rear and left rear speed sensor Each speed sensor circuit Sensor rotor
C0210 / 33* ¹ (DI–222)	Right rear wheel speed sensor signal malfunction	
C0215 / 34* ¹ (DI–222)	Left rear wheel speed sensor signal malfunction	
C0226 / 21 (DI–229)	Open or short circuit of brake actuator solenoid circuit (SFR circuit)	Brake actuator SFRR or SFRH circuit
C0236 / 22 (DI–229)	Open or short circuit of brake actuator solenoid circuit (SFL circuit)	Brake actuator SFLR or SFLH circuit
C0246 / 23 (DI–229)	Open or short circuit of brake actuator solenoid circuit (SRR circuit)	Brake actuator SRRR or SRRH circuit
C0256 / 24 (DI–229)	Open or short circuit of brake actuator solenoid circuit (SRL circuit)	Brake actuator SRLR or SRLH circuit
C0273 / 13* ¹ (DI–233)	Open or short circuit of ABS motor relay circuit	ABS motor relay
C0274 / 14 (DI–233)	B+ short circuit of ABS motor relay circuit	ABS motor relay circuit
C0278 / 11 (DI–237)	Open or short circuit of ABS solenoid relay circuit	• ABS solenoid relay
C0279 / 12 (DI–237)	B+ short circuit of ABS solenoid relay circuit	ABS solenoid relay circuit
C1225 / 25 (DI–229)	Open or short circuit of brake actuator solenoid circuit (SMC1 or SMC2 circuit)	Brake actuator SMC1 or SMC2 circuit
C1226 / 26 (DI–229)	Open or short circuit of brake actuator solenoid circuit (SMV1 or SMV2 circuit)	Brake actuator SMV1 or SMV2 circuit
C1227 / 27 (DI–229)	Open or short circuit of brake actuator solenoid circuit (SRC1 or SRC2 circuit)	Brake actuator SRC1 or SRC2 circuit
C1235 / 35 (DI–222)	Foreign matter is attached on the tip of the right front sensor	 Right front, left front, right rear, left rear speed sensor Speed sensor rotor
C1236 / 36 (DI–222)	Foreign matter is attached on the tip of the left front sensor	
C1238 / 38 (DI–222)	Foreign matter is attached on the tip of the right rear sensor	
C1239 / 39 (DI–222)	Foreign matter is attached on the tip of the left rear sensor	

DI0WA-10

DIAGNOSTICS – ABS & BA & TRC & VSC SYSTEM

C1241 / 41 (DI–263)	Low battery voltage or abnormally high battery voltage	Battery Charging system Power source circuit
C1243 / 43* ¹ (DI–267)	Malfunction in deceleration sensor (abnormal constant output)	Deceleration sensor Wire harness for deceleration sensor system
C1244 / 44 (DI–269)	Open or short circuit of deceleration sensor circuit	Deceleration sensor Deceleration sensor circuit
C1245 / 45* ¹ (DI–267)	Malfunction in deceleration sensor	Deceleration sensor Wire harness for deceleration sensor system
C1246 / 46* ² (DI–271)	Malfunction in master cylinder pressure sensor	Master cylinder pressure sensor Master cylinder pressure sensor circuit
C1249 / 49 (DI–274)	Open circuit of stop light switch circuit	Stop light switch circuit
C1251 / 51* ¹ (DI–277)	Pump motor is locked Open circuit of pump motor circuit	ABS pump motor
Always ON (DI–281)	Malfunction in skid control ECU	Battery Charging system Power source circuit Skid control ECU
• *1: These DTC will not affect to cancel the ABS warning light by repairing the trouble area, so perform		

*1: These DTC will not affect to cancel the ABS warning light by repairing the trouble area, so perform the following operations.

- (1) Drive the vehicle at 20 km/h (12 mph) for 30 seconds or more and check that the ABS warning light goes off.
- (2) Clear the DTC (See page DI–205).
- *2: These DTC will not affect to cancel the ABS warning light by repairing the trouble area, so perform the following operations.
 - (1) Keep the vehicle in the stationary condition for 5 seconds or more and depress the brake pedal lightly 2 or 3 times.
 - (2) Driving the vehicle at the vehicle speed 50 km/h (31 mph) and keep depressing the brake pedal strongly for about 3 seconds.
 - (3) Repeat the above operation 3 times or more and check that the ABS warning light goes off.
 - (4) Clear the DTC (See page DI–205).

HINT:

There is a case that hand-held tester cannot be used when ABS warning light is always on.

DTC chart of VSC:

DTC No. (See page)	Detection Item	Trouble Area	
C1201 / 51 (DI–242)	Engine and ECT ECU system malfunction	Engine control system	
C1202 / 52 (DI–243)	Brake fluid level low Open circuit of brake fluid level warning switch circuit	 Brake fluid level Brake fluid level warning switch Brake fluid level warning switch circuit 	
C1203 / 53 (DI–245)	Engine and ETC ECU communication circuit malfunction	• TRC+ or TRC- circuit • ENG+ or ENG- circuit • Engine and ECT ECU	
C1207 / 37 (DI–247)	Malfunction in neutral start switch	Neutral start switch Neutral start switch (Park/Reverse range circuit)	
C1210 / 36 (DI–250)	Zero point calibration of yaw rate sensor undone	Yaw rate sensor Yaw rate sensor circuit P range switch circuit	
C1223 / 43 (DI–252)	Malfunction in ABS control system	ABS control system	
------------------------	--	--	--
C1224 / 44 (DI–253)	Open or short circuit of NE signal circuit	NEO circuit Engine and ECT ECU	
C1231 / 31 (DI–255)	Malfunction in steering angle sensor	Steering angle sensor Steering angle sensor circuit	
C1232 / 32 (DI–258)	Malfunction in deceleration sensor	Deceleration sensor Deceleration sensor circuit	
C1233 / 33 (DI–260)	Open or short circuit of yaw rate sensor circuit	• Yaw rate sensor	
C1234 / 34 (DI–260)	Malfunction in yaw rate sensor	Yaw rate sensor circuit	
C1335 / 35 (DI–279)	Malfunction in steering angle sensor communication circuit	Steering angle sensor circuit	
Always ON (DI–284)	Malfunction in skid control ECU Open circuit of VSC warning indicator circuit	 Power source circuit Charging system VSC warning indicator circuit Skid control ECU 	

HINT:

There is a case that hand-held tester cannot be used when VSC warning indicator is always on.

PARTS LOCATION

DI0WC-09

TERMINALS OF ECU

DI84N-01

PMC (A21 – 22) – E2 (A21 – 23)	$W \leftrightarrow R$	IG switch ON, stop light switch OFF	0.3 – 0.7
E2 (A21 – 23) – GND (A21 – 6, 31, A22 – 8, 17)	$R \leftrightarrow WB$	IG switch OFF	Continuity
FSS (A21 – 24) – GND (A21 – 6, 31, A22 – 8, 17)	Shielded \leftrightarrow W–B	IG switch OFF	Continuity
MT (A21 – 28) – GND (A21 – 6, 31, A22 – 8, 17)	$LG-B \leftrightarrow W-B$	IG switch ON (Motor relay is OFF)	Below 1.5
MR (A21 – 29) – GND (A21 – 6, 31, A22 – 8, 17)	$B-W \leftrightarrow W-B$	IG switch ON, ABS motor stops	10 – 14
VGS (A22 – 1) – GGND (A22 – 10)	$R \leftrightarrow B$	IG switch ON	4.5 – 5.5
GL1 (A22 – 2) – GGND (A22 – 10)	$W \leftrightarrow B$	IG switch ON, vehicle is placed on the horizontal surface	2-3
Tc (A22 – 3) – GND (A21 – 6, 31, A22 – 8, 17)	P−B \leftrightarrow W−B	IG switch ON	10 – 14
Ts (A22 – 4) – GND (A21 – 6, 31, A22 – 8, 17)	W–L ↔ W–B	IG switch ON	10 – 14
IG1 (A22 – 6) – GND (A21 – 6, 31, A22 – 8, 17)	$B-R \leftrightarrow W-B$	IG switch ON	10 – 14
NEO (A22 – 7) – GND (A21 – 6, 31, A22 – 8, 17)	$LO\leftrightarrowWB$	Engineidling	Pulsegeneration
GL2 (A22 – 9) – GGND (A22 – 10)	$G \leftrightarrow B$	IG switch ON, vehicle is placed on the level surface	2.0 - 3.0
GGND (A22 – 10) – GND (A21 – 6, 31, A22 – 8, 17)	$B \leftrightarrow WB$	IG switch OFF	Continuity
RR+ (A22 – 11) – RR– (A22 – 12)	$GR extsf{-R}\leftrightarrowL$	IG switch ON, slowly turn right rear wheel	AC generation
ENG+ (A22 – 14) – ENG– (A22 – 22)	$R-Y \leftrightarrow BR-W$	IG switch ON, engine idling	Pulsegeneration
GSS (A22 – 18) – GND (A21 – 6, 31, A22 – 8, 17)	Shielded \leftrightarrow W–B	IG switch OFF	Continuity
RL+ (A22 – 19) – RL– (A22 – 20)	$LY\leftrightarrowLW$	IG switch ON, slowly turn left rear wheel	AC generation
PKB (A22–15) – GND (A21–6,		IG switch ON, parking brake switch ON	Below 2.0
31, A22 – 8, 17)		IG switch ON, parking brake switch OFF	10-14
TRC+ (A22 – 24) – TRC– (A22 – 16)	$GR\leftrightarrowP-B$	IG switch ON, engine idling	Pulsegeneration
BRL (A23 – 1) – GND (A21 – 6, 31, A22 – 8, 17)	$G \leftrightarrow WB$	IG switch ON, fluid in master cylinder reservoir above MIN level and parking brake switch is OFF (Brake warning light is OFF)	10 – 14
VSCW (A23 – 4) – GND (A21 –		IG switch ON, VSC warning light ON	Below 2.0
6, 31, A22 – 8, 17)	$VV-G \leftrightarrow VV-B$	IG switch ON, VSC warning light OFF	10-14
WA (A23 – 5) – GND (A21 – 6,	$BY\leftrightarrowWB$	IG switch ON, ABS warning light ON	Below 2.0
31, A22 – 8, 17)		IG switch ON, ABS warning light OFF	10-14
IND (A23 – 6) – GND (A21 – 6,		IG switch ON, SLIP indicator light ON	Below 2.0
$\begin{array}{c} (1,1,2,2,2) \\ (31,1,2,2,2,3,1,7) \\ \end{array} \qquad \qquad$		IG switch ON, SLIP indicator light OFF	10-14
STP (A23 – 7) – GND (A21 – 6,	GYOWB	Stop light switch OFF	Below 1.5
31, A22 – 8, 17)		Stop light switch ON	8-14
VYS (A23 – 9) – GYAW (A23 – 27)	$R-L \leftrightarrow R-W$	IG switch ON	4.5 - 5.5

LEXUS RX300 (RM785E)

LBL (A23 – 11) – GND (A21 – 6, 31, A22 – 8, 17)	$R-W \leftrightarrow W-B$	IG switch ON, fluid in master cylinder reservoir above MIN level	About 4 – 8
SS1+ (A23 – 14) – SS1– (A23 – 23)	$LG-B \leftrightarrow LG$	Engine idling, slowly turn steering wheel	Pulse generation (See page DI–255)
R (A23 – 15) – GND (A21 – 6,		IG switch ON, sift lever is in R range	8–14
31, A22 – 8, 17)	$R - B \leftrightarrow W - B$	IG switch ON, sift lever is in other than R range	Below 1.5
SP1 (A23 – 16) – GND (A21 – 6, 31, A22 – 8, 17)	$RB\leftrightarrowWB$	Vehicle driving at about 20 km/h (12 mph)	Pulsegeneration
YSS (A23 – 18) – GND (A21 – 6, 31, A22 – 8, 17)	Shielded \leftrightarrow W–B	IG switch OFF	Continuity
YD (A23 – 19) – GND (A21 – 6, 31, A22 – 8, 17)	$W-R \leftrightarrow W-B$	IG switch ON, VSC warning light OFF	4.5 - 5.5
BZ (A23 – 20) – GND (A21 – 6,		IG switch ON, VSC buzzer sounds	Below $1.0 \leftrightarrow 10 - 14$
31, A22 – 8, 17) G−O ↔ W−B		IG switch ON, VSC buzzer does not sound	10-14
D (A23 – 22) – GND (A21–6,		IG switch ON, shift lever is in D range	8-14
31, A22 – 8, 17)	G−R ↔ W−B	IG switch ON, shift lever is in other than D range	Below 1.5
P (A23 – 24) – GND (A21 – 6,		IG switch ON, sift lever is in P range	8-14
31, A22 – 8, 17)	$G - VV \leftrightarrow VV - B$	IG switch ON, sift lever is in other than P range	Below 1.5
D/G (A23 – 25) – GND (A21 – 6, 31, A22 – 8, 17)	$W \leftrightarrow W\text{-}B$	IG switch ON	10 – 14
GYAW (A23 – 27) – GND (A21 – 6, 31, A22 – 8, 17)	$R-W \leftrightarrow W-B$	IG switch OFF	Continuity
YAW (A23 – 28) – GYAW (A23 – 27)	$B \leftrightarrow R-W$	IG switch ON, vehicle is in stationary condition	2-3

-

DI0WG-10

PROBLEM SYMPTOMS TABLE

If a normal code is displayed during the DTC check but the problem still occurs, check the circuits for each problem symptom in the order given in the table below and proceed to the relevant troubleshooting page. **NOTICE:**

When replacing skid control ECU, sensor or etc., turn the ignition switch OFF.

Symptom	Suspect Area	See page
ABS does not operate	 Only when 1. to 4. are all normal and the problem is still occurring, replace the skid control ECU. Check the DTC reconfirming that the normal code is output. IG power source circuit Speed sensor circuit Check the brake actuator with a hand-held tester. If abnormal, check the hydraulic circuit for leakage (See page DI-302). 	DI-205 DI-263 DI-222 BR-54
ABS does not operate efficiently	 Only when 1. to 4. are all normal and the problem is still occurring, replace the skid control ECU. 1. Check the DTC reconfirming that the normal code is output. 2. Speed sensor circuit 3. Stop light switch circuit 4. Check the brake actuator with a hand-held tester. If abnormal, check the hydraulic circuit for leakage (See page DI-302). 	DI-205 DI-222 DI-274 BR-54
ABS warning light abnormal	 ABS warning light circuit Skid control ECU 	DI–287 DI–281
BRAKE warning light abnormal	 BRAKE warning light circuit Skid control ECU 	DI–290
DTC check cannot be done	 Only when inspection circuits for each problem symptom are all normal and the problem is still occurring, replace the skid control ECU. 1. ABS warning light circuit 2. VCS warning indicator circuit 3. Tc terminal circuit 	DI–287 DI–284 DI–298
Speed sensor signal check cannot be done	 Ts terminal circuit Skid control ECU 	DI–300 DI–281
VSC does not operate	 Only when inspection circuits for each problem symptom are all normal and the problem is still occurring, replace the skid control ECU. Check the DTC, reconfirming that the normal code is output. IG power source circuit Check the hydraulic circuit for leakage. Speed sensor circuit Deceleration sensor circuit Yaw rate sensor circuit Steering angle sensor circuit 	DI-205 DI-263 DI-302 DI-222 DI-269 DI-260 DI-255
BA does not operate	Stop light switch circuit	DI-274

DIAGNOSTICS – ABS & BA & TRC & VSC SYSTEM

SLIP indicator light abnormal	SLIP indicator light circuit	DI–292
VSC warning light abnormal	Only when inspection circuits for each problem symptom are all normal and the problem is still occurring, replace the skid control ECU. 1. VSC warning indicator circuit 2. Skid control ECU	DI-284

CIRCUIT INSPECTION

DTC	C0200 / 31 – C1239 / 39	Speed Sensor Circuit

CIRCUIT DESCRIPTION

The speed sensor detects wheel speed and sends the appropriate signals to the ECU. These signals are used for control of both the ABS & BA & VSC control system. The front and rear rotors each have 48 serrations.

DI7UK-02

When the rotors rotate, the magnetic field emitted by the permanent magnet in the speed sensor generates an AC voltage. Since the frequency of this AC voltage changes in direct proportion to the speed of the rotor, the frequency is used by the ECU to detect the speed of each wheel.

DTC No.	DTC Detecting Condition	Trouble Area
C0200 / 31 C0205 / 32 C0210 / 33 C0215 / 34	 Detection of any of conditions from 1. through 3.: At vehicle speed of 10 km/h (6 mph) or more, pulses are not input for 15 sec. (When RL and RR wheels are faulty for 200 sec.) Momentary interruption of the speed sensor signal occurs at least 7 times in the time between switching the ignition switch ON and switching it OFF. The speed sensor signal circuit is open circuit continues for 0.5 sec. or more. 	 Right front, left front, right rear, left rear speed sensor Each speed sensor circuit Speed sensor rotor
C1235/35 C1236/36 C1238/38 C1239/39	Continuous noise occurs in to the speed sensor signals with the vehicle speed at 20 km/h (12 mph) or more continues for 5 sec or more.	 Right front, left front, right rear, left rear speed sensor Speed sensor rotor

HINT:

- DTC No. C0200 / 31 and C1235 / 35 is for the right front speed sensor.
- DTC No. C0205 / 32 and C1236 / 36 is for the left front speed sensor.
- DTC No. C0210 / 33 and C1238 / 38 is for the right rear speed sensor.
- DTC No. C0215 / 34 and C1239 / 39 is for the left rear speed sensor.

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check output value of speed sensor.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

Check that there is no difference between the speed value output from the speed sensor displayed by the hand-held tester and the speed value displayed by the speedometer when driving the vehicle.

OK:

There is almost no difference from the displayed speed value.

HINT:

There is tolerance of \pm 10 % in the speedometer indication.

NG

2 Check speed sensor.

Front: PREPARATION:

(a) Remove the front fender liner.

- (b) Make sure that there is no looseness at the connector lock part and connecting part of the connector.
- (c) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

OK:

Resistance: 1.4 – 1.8 k Ω

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

OK:

Resistance: 1 M Ω or higher

Rear: PREPARATION:

- (a) Remove the seat cushion and seatback.
- (b) Make sure that there is no looseness at the connector lock part and connecting part of the connector.
- (c) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

OK:

Resistance: 0.6 – 1.8 k Ω

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

OK:

Resistance: 1 M Ω or higher

NOTICE:

Check the speed sensor signal last (See page DI–205).

OK

3	Check for open and short circuit in harness and connector between each speed sensor and skid control ECU (See page IN–32).	
	NG Repair or replace harness or connector.	

OK

5

Check speed sensor and sensor rotor serrations.

(REFERENCE) INSPECTION USING OSCILLOSCOPE

PREPARATION:

- (a) Remove the skid control ECU with connectors still connected.
- (b) Connect the oscilloscope to the terminals FR+-FR-, FL+- FL-, RR+-RR- or RL+-RL- of the skid control ECU.

CHECK:

Drive the vehicle with about 20 km/h (12 mph), and check the signal waveform.

HINT:

- As the vehicle speed (rpm of the wheels) increases, a cycle of the waveform becomes shorter and the flucturation in the output voltage becomes greater.
- When noise is identified in the waveform on the oscilloscope, error signals are generated due to the speed sensor rotor's scratches, looseness or foreign matter deposited on it.

ок

NG

6

Check sensor rotor and sensor tip.

Front: PREPARATION:

Remove the front drive shaft (See page SA-12).

CHECK:

Check the sensor rotor serrations.

OK:

No scratches, missing teeth or foreign objects. PREPARATION:

Remove the front speed sensor (See page BR-59).

CHECK:

Check the sensor tip.

OK:

No scratches or foreign objects on the sensor tip. HINT:

If foreign matter (including that on the sensor rotor side) is identified, remove it and after reassembling, check the output waveform.

Rear:

PREPARATION:

Remove the rear drive shaft (See page SA-52).

CHECK:

Check the sensor rotor serrations.

OK:

No scratches, missing teeth or foreign objects. PREPARATION:

Remove rear speed sensor (See page BR-62).

CHECK:

Check the sensor tip.

OK:

No scratches or foreign objects on the sensor tip. HINT:

If foreign matter (including that on the sensor rotor side) is identified, remove it and after reassembling, check the output waveform.

Replace speed sensor or rotor.

NOTICE:

Check the speed sensor signal last (See page DI-205).

DI84P-01

DTC

C0226 / 21 – C1227 / 27

ABS Solenoid Circuit

CIRCUIT DESCRIPTION

This solenoid goes on when signals are received from the ECU and controls the pressure acting on the wheel cylinders thus controlling the braking force.

DTC No.	DTC Detecting Condition	Trouble Area
C0226 / 21	Open or short circuit for SFRH or SFRR circuit continues for 0.05 sec. or more. (When the solenoid is normally ON.)	Brake actuator SFRH or SFRR circuit
C0236 / 22	Open or short circuit for SFLH or SFLR circuit continues for 0.05 sec. or more. (When the solenoid is normally ON.)	Brake actuator SFLH or SFLR circuit
C0246 / 23	Open or short circuit for SRRH or SRRR circuit continues for 0.05 sec. or more. (When the solenoid is normally ON.)	Brake actuator SRRH or SRRR circuit
C0256 / 24	Open or short circuit for SRLH or SRLR circuit continues for 0.05 sec. or more. (When the solenoid is normally ON.)	Brake actuator SRLH or SRLR circuit
C1225 / 25	Open or short circuit for SMC1 or SMC2 circuit continues for 0.05 sec. or more.	Brake actuator SMC1 or SMC2 circuit
C1226 / 26	Open or short circuit for SMV1 or SMV2 circuit continues for 0.05 sec. or more.	Brake actuator SMV1 or SMV2 circuit
C1227 / 27	Open or short circuit for SRC1 or SRC2 circuit continues for 0.05 sec. or more.	Brake actuator SRC1 or SRC2 circuit

INSPECTION PROCEDURE

1

Check brake actuator solenoid.

PREPARATION:

Disconnect the 3 connectors from brake actuator. **CHECK:**

Check continuity between terminal A7 - 4 and terminals A5 - 1, 2, 3, 5, 6, 7, 8, 9, 10, 11 and 12, and between terminal A7 - 4 and terminals A6 - 1, 2 and 3 of brake actuator.

OK:

Continuity

HINT: (Reference) Resistance of each solenoid SFRH, SFLH, SRRH, SRLH: $8.0 - 10.0 \Omega$ SFRR, SFLR, SRRR, SRLR: $3.0 - 5.5 \Omega$ SRC1, SRC2: 8.6Ω SMC1, SMC2, SMV1, SMV2: 8.8Ω

NG Replace brake actuator.

ок

2 Check for open and short circuit in harness and connector between skid control ECU and brake actuator (See page IN–32).

NG Repair o

Repair or replace harness or connector.

ок

3 Check voltage between terminal SR of skid control ECU and body ground.

PREPARATION:

Remove the skid control ECU with connectors still connected.

CHECK:

Turn the ignition switch ON, measure between terminal SR and GND.

OK:

Voltage: 1V or less

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

DI1GJ-08

DTC

C0273 / 13, C0274 / 14

ABS Motor Relay Circuit

CIRCUIT DESCRIPTION

The ABS motor relay supplies power to the ABS pump motor. While the ABS & BA & TRC & VSC are activated, the ECU switches the motor relay ON and operates the ABS pump motor.

DTC No.	DTC Detecting Condition	Trouble Area
C0273/13	 Conditions 1. and 2. continued for 0.2 sec. or more: 1. ECU terminal IG1 voltage is 9.5 V to 17.2 V in the initial check or ABS, TRC or VSC are in operation, and when the motor relay is ON, however the contact point of the motor relay is OFF. 2. ECU terminal IG1 is 9.5 V or less, and when the motor relay is ON, but the contact point of the motor relay is ON, but the contact point of the motor relay does not become ON. 	• ABS motor relay • ABS motor relay circuit
C0274/14	When the motor relay is OFF, the condition that the contact point of motor relay is ON continues for 4 sec. or more.	

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using hand-held tester.

Check ABS motor relay operation.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check the operation sound of the ABS motor relay when operating it with the hand-held tester. **OK:**

The operation sound of the ABS motor relay should be heard.

NG

2 Check voltage between terminal 1 of R/B No. 2 (for ABS motor relay) and body ground.

PREPARATION:

Remove the ABS motor relay from R/B No. 2.

CHECK:

Measure voltage between terminal 1 of R/B No. 2 (for ABS motor relay) and body ground.

OK:

NG

Voltage: 10 – 14 V

 \rangle Check and repair harness or connector.

OK

OK

4 Check continuity between terminal 2 of ABS motor relay and terminal MT of skid control ECU.

CHECK:

Check continuity between terminal 2 of R/B No. 2 (for ABS motor relay) and terminal MT of skid control ECU.

Continuity

HINT:

There is a resistance of $26 - 40 \Omega$ between terminals A7 – 2 and A7 – 3 of brake actuator.

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

DI84Q-01

DTC

C0278 / 11, C0279 / 12

ABS Solenoid Relay Circuit

CIRCUIT DESCRIPTION

This relay supplies power to each ABS solenoid. After the ignition switch is turned ON, if the initial check is OK, the relay goes on.

DTC No.	DTC Detecting Condition	Trouble Area
C0278 / 11	 Conditions 1. and 2. continue for 0.2 sec. or more: 1. ECU terminal IG1 voltage is 9.5 V to 17.2 V and the solenoid relay is ON, however the contact point of the solenoid relay is OFF. 2. With solenoid relay ON driving, ECU terminal IG1 voltage becomes 9.5 V or less and the contact point of the solenoid relay does not become ON. 	• ABS solenoid relay • ABS solenoid relay circuit
C0279/12	Immediately after ECU terminal IG1 becomes ON, and solenoid relay is OFF, however the condition that the contact point of the solenoid relay is ON continues for 0.2 sec. or more.	

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check ABS solenoid relay operation.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check the operation sound of the ABS solenoid relay when operating it with the hand-held tester. **OK:**

The operation sound of the ABS solenoid relay should be heard.

NG

2 Check voltage between terminal 1 of R/B No. 2 (for ABS solendoid relay) and body ground.

PREPARATION:

Remove the ABS solenoid relay from R/B No. 2.

CHECK:

Measure the voltage between terminal 1 of R/B No. 2 (for ABS solenoid relay) and body ground.

OK:

NG

Voltage: 10 – 14 V

 \rangle Check and repair harness or connector.

OK

Replace ABS solenoid relay.

NG

ок

Check continuity between terminals 3 of ABS solenoid relay and each solenoid

terminal of skid control ECU.

CHECK:

Check continuity between terminal 3 of R/B No. 2 (for ABS solenoid relay) and terminal AST of skid control ECU **OK:**

Continuity

HINT:

There is a resistance of $26 - 40 \Omega$ between terminals A7 – 4 and A7 – 5 of brake actuator.

5 Check for open and short circuit in harness and connector between ABS solenoid relay and skid control ECU (See page IN–32).

NG

Repair or replace harness or connector.

OK

OK

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

DI1GY-09

DTC C1201 / 51 Engine Control System Malfunction

CIRCUIT DESCRIPTION

If any trouble occurs in the engine control system, the ECU prohibits BA & TRC & VSC control.

DTC No.	DTC Detecting Condition	Trouble Area
C1201/51	The engine speed is 500 rpm or more and ENG malfunction signal continuously occurs for 5 sec. or more.	Engine control system

INSPECTION PROCEDURE

1	Check the DTC for the engine (See page DI–3).

Repair engine control system according to the code output.

*2

Τ

Check for engine and ECT ECU connected to malfunction indicator light.

*1: Output NG code

*2: Malfunction indicator light remains ON

DI1GZ-11

DTC

C1202 / 52

Brake Fluid Level Warning Switch Circuit

CIRCUIT DESCRIPTION

The brake fluid level warning switch sends the appropriate signal to the ECU when the brake fluid level drops. HINT:

Depress the parking brake pedal and also turns on the brake warning light but does not diagnose DTC No. C1202 / 52.

DTC No.	DTC Detecting Condition	Trouble Area
C1202/52	ECU terminal IG1 voltage is 9.5 V to 17.2 V and open cir-	Brake fluid level
	cuit for the brake fluid level warning switch circuit continues	Brake fluid level warning switch
	for 2 sec. or more.	Brake fluid level warning switch circuit

INSPECTION PROCEDURE

Check brake fluid level.

CHECK:

Check the amount of brake fluid in the reservoir.

DI1H0-11

DTC

C1203 / 53

Engine and ECT ECU Communication Circuit Malfunction

CIRCUIT DESCRIPTION

The circuit is used to send TRC & VSC control information from the skid control ECU to the engine and ECT ECU (TRC+, TRC–), and engine control information from the engine and ECT ECU to the skid control ECU (ENG+, ENG–).

DTC No.	DTC Detecting Condition	Trouble Area
C1203/53	 Either of the following 1., 2. or 3. continues for 5 sec.: 1. When ECU terminal IG1 voltage is 9.5 V or more, the condition that the data is not transmitted to engine and ECT ECU continues for more than 5 sec. 2. When ECU terminal IG1 voltage is 9.5 V or more, engine speed is 500rpm or more and data receipt from engine and ECT ECU is impossible. 3. The condition that data transmission and reception to/ from engine and ECT ECU become impossible once or more within 5 sec. repeatedly occurs 10 times. 	• TRC+ or TRC– circuit • ENG+ or ENG– circuit • Engine and ECT ECU

INSPECTION PROCEDURE

 1
 Check for open and short circuit in harness and connector between each of terminals ENG+, ENG-, TRC+, TRC- of skid control ECU and engine and ECT ECU (See page IN-32).

 NG
 Repair or replace harness or connector.

 OK
 OK

Check and replace engine and ECT ECU or skid control ECU.

DI1H1-06

DTC

C1207 / 37

Neutral Start Switch (Park/Reverse Range Circuit)

CIRCUIT DESCRIPTION

DTC No.	DTC Detection Condition	Trouble Area
C1207 / 37	 When any of the following 1. through 3. is detected: 1. At vehicle speed of 15 km/h (9 mph) or less and when the condition that open circuit signal of P signal circuit of neutral start switch is ON continues 5 sec. or more. 2. At vehicle speed of 15 km/h (9 mph) or more, P signal from neutral start switch is ON, the shift lever position information from the engine and ECT ECU is other than in P or N range condition continues for 60 sec. or more. 3. At vehicle speed of 15 km/h (9 mph) or less and when the condition that open circuit signal of R signal circuit of neutral start switch is ON continues 2 sec. or more. 	• Neutral start switch • Neutral start switch (Park/Reverse range circuit)

Jack up the vehicle.

shift lever is moved to each position.

INSPECTION PROCEDURE

Check neutral start switch (Park/Reverse range switch circuit).

(a) (b)

CHECK:

PREPARATION:

<u>OK:</u>		
P range switch	Terminals 3 – 1	Continuity
R range switch	Terminals 3 – 2	Continuity
	•	

Check continuity between each terminal shown below when the

Disconnect the connector from the neutral start switch.

NG Replace neutr

Replace neutral start switch.

OK

2 Check for open and short circuit in harness and connector between terminals P and R of skid control ECU and engine and ECT ECU connector and battery (See page IN–32).

NG

Repair or replace harness or connector.

OK

Check and replace skid control ECU or engine and ECT ECU.

DI1H2-06

DTC	C1210 / 36	Zero Point Calibration of Yaw Rate
		Sensor Undone

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1010/26	After battery terminal was connected, when the shift lever	Yaw rate sensor You rate sensor
C1210736	was moved other than to P range within 15 sec. soon alter	• Yaw rate sensor circuit
	ECU terminal IG1 become ON for the first time.	P range switch circuit

WIRING DIAGRAM

INSPECTION PROCEDURE

1	Check if zero point calibration of yaw rate sensor has done or not.
	the zero point calibration of the vaw rate sensor (See page DI_{205})

Obtains the zero point calibration of the yaw rate sensor (See page DI–205). **CHECK:**

Check that the VSC indicator light comes on and the both indicators go off after 15 seconds.

NO

DTC C1223 / 43 ABS	Control System Malfunction
--------------------	-----------------------------------

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area	
C1223 / 43 ABS control system is abnormal.		ABS control system	

INSPECTION PROCEDURE

1	Check the DTC for the ABS (See page DI–205).

Repair ABS control system according to the code output.

DI1H3-09

*2

Check for ECU connected to malfunction indicator light.

*1: Output NG code

*2: Malfunction indicator light remains ON

DI1H4-10

DTC

C1224 / 44

NE Signal Circuit

CIRCUIT DESCRIPTION

The skid control ECU receives engine revolution speed signals (NE signals) from the engine and ECT ECU.

DTC No.	DTC Detecting Condition	Trouble Area
C1224 / 44	At vehicle speed of 30 km/h (19 mph) or more, when data receiving from the engine and ECT ECU is in normal condi- tion, and open or short circuit for engine revolution signal circuit continues for 10 sec. or more.	NEO circuit Engine and ECT ECU

If the same codes is still output after the DTC is deleted, check the contact condition of each connection.

DTC	C1231 / 31	Steering Angle Sensor Circuit
-----	------------	-------------------------------

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
04004 / 04	The condition that the data is not transmitted to the steering	Steering angle sensor
01231/31	angle sensor continues for more than 1.2 sec.	Steering angle sensor circuit

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 3 in case of not using the hand-held tester.

Check output value of the steering angle sensor.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.
- (d) Drive the vehicle straight forward at 35 km/h (22 mph) or more for 1 second or longer.

HINT:

- At this time, the zero point calibration of the steering angle sensor was memorized.
- Do not stop the engine.

CHECK:

NG

Check that the steering wheel turning angle value of the steering angle sensor displayed by the hand-held tester is changing when turning the steering wheel.

OK:

Steering wheel turning angle value must be changing.

 \rangle Replace steering angle sensor.

NO		
END		

3 Check steering angle sensor.

PREPARATION:

- (a) Remove the steering wheel lower No. 2 and No. 3 covers, steering wheel pad, steering wheel, column upper and lower covers (See page SR–10).
- (b) Disconnect the connector from the steering angle sensor.
- (c) Connect the oscilloscope to the terminals 3 and 6 of the combination switch connector (for steering angle sensor).
- (d) Apply battery voltage between terminals 1 and 2.

CHECK:

Turn the steering wheel slowly and check the signal waveform. **OK:**

HINT:

The above signal waveform does not repeat ON and OFF regularly and this combination changes case by case according to the data.

ОК

4 Check for open and short circuit in harness and connector between steering angle sensor and skid control ECU (See page IN–32).

DTC

C1232 / 32

Deceleration Sensor Circuit

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1232/32	 Detection of any of conditions 1. through 2. : At the vehicle speed of 10 km/h (6 mph) or more, the condition that ECU terminal GL1 signal change range is less than 20 mV continues for 30 sec., and ECU terminal GL2 signal change range swings by 0.47 V or more. At the vehicle speed of 10 km/h (6 mph) or more, the condition that ECU terminal GL2 signal change range is less than 20 mV continues for 30 sec., and ECU terminal GL1 signal change range is less than 20 mV continues for 30 sec., and ECU terminal GL1 signal change range swings by 0.47 V or more. 	 Deceleration sensor Deceleration sensor circuit

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

1

Check output value of the deceleration sensor.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

Check that the deceleration value of the deceleration sensor displayed by the hand-held tester is changing when tilting the vehicle.

OK:

Deceleration value must be changing.

NG

2 Check deceleration sensor (See page DI–205).

Replace deceleration sensor assembly.

OK

3	Check for open or short circuit in harness and connector between deceleration sensor and skid control ECU (See page IN–32).	
	NG Repair or replace harness and connector.	
ОК		
Chec	k and replace skid control ECU.	

DI6GH-03

DTC

C1233 / 33, C1234 / 34

Yaw Rate Sensor Circuit

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1233/33	 When any of the following 1. through 4. is detected: 1. ECU terminal IG1 voltage is 9.5 to 17.2 V and the yaw rate sensor voltage is continuously out of the range from 0.25 to 4.75 V for 1 sec. or more. 2. ECU terminal IG1 voltage is 9.5 to 17.2 V and the yaw rate sensor open circuit detection signal remains ON for 1 sec. or more. 3. ECU terminal IG1 voltage is 9.5 to 17.2 V and the yaw rate sensor power source voltage remains out of the range from 4.4 to 5.6 V for 1 sec. or more. 4. Momentary interruption of the yaw rate sensor signal occurs 10 times or more. 	• Yaw rate sensor • Yaw rate sensor circuit
C1234/34	When the condition that yaw rate sensor voltage is 4.4 V to 5.6 V and YD malfunction signal of yaw rate sensor is ON continued for 5 sec. or more.	

2	Is DTC still output?	
Check [DTC on page DI–205.	
		NO No problem.
YES		
3	Check output value of the y	aw rate sensor.
	1	In case of using the hand–held tester: PREPARATION:
		 Remove the 2 bolts and yaw rate sensor with connector still connected.
		(b) Connect the hand-held tester to the DLC3.
		(c) Turn the ignition switch ON and push the hand-held tes- ter main switch ON.
	C. C. Sandara States	(d) Select the DATALIST mode on the hand-held tester.
	F02808	CHECK:

Check that the yaw rate value of the yaw rate sensor displayed on the hand-held tester is changing: Place the yaw rate sensor vertically to the ground and turn the sensor pivoted on its center. **OK:**

Yaw rate value must be changing.

DIAGNOSTICS - ABS & BA & TRC & VSC SYSTEM

In case of not using the hand-held tester: **PREPARATION:**

- Turn the ignition switch ON. (a)
- Measure voltage between terminals 1 and 3, 3 and 4 of (b) the yaw rate sensor with connector still connector.

OK:

Terminals 1 and 3 (YAW – GYAW)	APPROX. 2.5 V	
(GYAW – YD)	APPROX. 4.5 V – 5.5 V	
NG Replace yaw rate sensor.		

OK

4

Check voltage between terminals YD and GND of skid control ECU.

ΟΚ

PREPARATION: Remove the skid control ECU withe connector still connected. CHECK: Turn the ignition switch ON. (a) (b) Measure voltage between terminals YD and GND of skid control ECU. OK: Voltage: 4.5 - 5.3 V Check and replace skid control ECU.

NG

DTC

C1241 / 41

IG Power Source Circuit

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1241 / 41	 Detection of any of conditions 1. or 2.: Vehicle speed is 3 km/h (1.9 mph) or more and voltage of ECU terminal IG remains at below 9.5 V for more than 10 sec. While the condition that the solenoid relay is ON continues, ECU terminal IG1 voltage becomes 9.5 V or less, and the condition that the contact point of the solenoid relay is OFF continues for 0.2 sec. or more. 	• Battery • Charging system • Power source circuit

3 Check voltage of the ECU–IG power source.

In case of using the hand-held tester:

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

Check the voltage condition output from the ECU displayed on the hand-held tester. **OK:**

"Normal" is displayed.

In case of not using the hand-held tester: PREPARATION:

Remove the skid contol ECU with connectors still connected. **CHECK:**

Turn the ignition switch ON, measure voltage between terminals IG1 and GND of skid control ECU connector.

OK:

ΟΚ

Voltage: 10 – 14 V

Check and replace skid control ECU.

NG

ΟΚ

4 Check continuity between terminal GND of skid control ECU connector and body ground.

CHECK:

Measure resistance between terminals GND of skid control ECU connector and body ground.

Resistance: 1 Ω or less

Repair or replace harness or connector.

Check for open circuit in harness and connector between skid control ECU and battery (See page IN–32).

Malfunction in Deceleration Sensor

DI1GL-05

CIRCUIT DESCRIPTION

C1243 / 43, C1245 / 45

DTC No.	DTC Detecting Condition	Trouble Area
C1243/43	While vehicle speed gets to 0 km/h (0 mph) from 30 km/h (18 mph), and the condition that GL1 and GL2 signals of ECU terminals did not change 2 LSB or more continued in a sequence 16 times.	
C1245/45	At the vehicle speed of 30 km/h (18 mph) or more, and the condition that the difference between acceleration and deceleration values of computation from deceleration sensor and vehicle speed becomes more than 0.35 G continues for 60 sec. or more.	Deceleration sensor Wire harness for deceleration sensor system

INSPECTION PROCEDURE

HINT:

DTC

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

1

Check output value of the deceleration sensor.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

Check that the deceleration value of the deceleration sensor displayed by the hand-held tester is changing when tilting the vehicle.

OK:

Deceleration value must be changing.

NG

2	2 Check deceleration sensor (See page DI–205).	
	NG Replace deceleration sensor.	

UK

3	Check for open or short circuit in harness and connector between deceleration sensor and skid control ECU (See page IN–32).	
	NG Repair or replace harness or connector.	
ОК		
Chec	k and replace skid control ECU.	

DI1GM-06

DTC

C1244 / 44

Deceleration Sensor Circuit

CIRCUIT DESCRIPTION

This sensor detects deceleration on the vehicle. The sensor signal is used in ABS & BA & TRC & VSC control. If the sensor functions abnormally, the ABS warning light comes on.

DTC No.	DTC Detecting Condition	Trouble Area
C1244/44	 Either of the following 1., 2., 3. or 4. is detected: 1. The condition that ECU terminals GL1 and GL2 G conversion values are –1.5 G or less or 1.5 G or more continues for 1.2 sec. or more. 2. The condition that the deceleration sensor terminal VGS voltage is 4.4 V or less or 5.6 V or more continues for 1.2 sec. or more. 3. At the vehicle speed of 0 km/h (0 mph), after the difference of output absolute value of G conversion value between deceleration sensor terminals GL1 and GL2 becomes 0.6 G or more, and the condition that does not become 0.4 G continues for 60 sec. or more. 4. Deceleration sensor signal momentary open occurs for 7 times or more. 	 Deceleration sensor Deceleration sensor circuit

DI1GN-06

DTC

C1246 / 46

Master Cylinder Pressure Sensor Circuit

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1246 / 46	 Either of the following 1., 2., 3., 4. or 5. is detected: 1. When the vehicle speed is 7 km/h (4.3 mph) and ECU terminal PMC voltage is 0.86 V or more, the condition that the terminal voltage does not change by more than 0.005 V continues for 30 sec. 2. The noise to ECU terminal PMC occurs 7 times for 5 secs. 3. When ECU terminal STP is OFF, the condition that ECU terminal PMC voltage is 0.86 or more or 0.3 V or less continues for more than 5 sec. 4. When the ECU terminal IG1 is 9.5 V to 17.2 V the condition that ECU terminal VCM voltage is out of range of 4.4 V to 5.6 V continues for 1.2 sec. 5. When ECU terminal VCM voltage is 4.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal VCM voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal VCM voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC voltage is 0.4 V to 5.6 V the condition that ECU terminal PMC vo	• Master cylinder pressure sensor • Master cylinder pressure sensor circuit

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check output value of the master cylinder pressure sensor.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

Check that the brake fluid pressure value of the master cylinder pressure sensor displayed on the hand-held tester is changing when depressing the brake pedal.

OK:

Brake fluid pressure value must be changing.

NG

2

Check master cylinder pressure sensor.

PREPARATION:

Install LSPV gauge to the front brake caliper bleeder plug portion, and bleed air from LSPV gauge.

SST 09709-29018

CHECK:

Start the engine and depress the brake pedal, then check the relation between the fluid pressure and voltage of PMC and E2 terminals of the master cylinder pressure sensor with connector still connected.

OK:

Front brake caliper fluid pressure	Voltage
0 kPa (0 Kgf/cm ² , 0 psi)	0.37 – 0.63 V
5,883 kPa (60 kgf/cm ² , 853 psi)	1.57 – 1.83 V
11,768 kPa (120 kgf/cm ² , 1,706 psi)	2.77 – 3.03 V

HINT:

Voltage between terminals VCM and E2: 4.7 - 5.3 V

NG

Replace brake actuator.

οк

DI1	GO-	-10

DTC	C1249 / 49	Stop Light Switch Circuit

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1249/49	ECU terminal IG1 voltage is 9.5 to 17.2 V and ABS is in non–operation, the open circuit of stop light switch circuit continues for 0.3 sec. or more.	Stop light switch circuit

1

Check operation of the stop light switch.

CHECK:

Check that the stop light lights up when brake pedal is depressed and turns off when the brake pedal is released.

DTC

C1251 / 51 A

ABS Pump Motor Lock

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1251/51	Either of the following 1. or 2. is detected:1. Brake actuator pump motor is not operating normally.2. Open circuit condition of brake actuator pump motor continues for 2 sec. or more.	ABS pump motor

1

Check operation of pump motor.

PREPARATION:

Disconnect the connector from the brake actuator.

CHECK:

Connect positive \oplus lead to BM terminal and negative \ominus lead to GND terminal of the brake actuator, check that the pump motor is operated.

OK:

The running sound of the pump motor should be heard.

Check for open circuit in harness and connector between ABS motor relay, brake actuator and ECU (See page IN–32).

DTC C1335 / 35 Steering Angle Sensor Communication Circuit Malfunction

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1335 / 35	When the condition that ECU terminal IG1 voltage is 9.5 V or more, and ECU does not receive data from steering angle sensor continues for 1 sec. or more.	Steering angle sensor circuit

DI1GP-06

DTC

Always ON*

Malfunction in ECU

*: ABS warning light

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
Alwaya ON	Either of the following 1., 2. or 3. is detected: 1. Voltage of ECU terminal IG1 remains at more than 17 V.	Battery Charging system
Always ON	2. The ECU connectors are off from the ECU.	Power source circuit
	3. There is a malfunction in the ECU internal circuit.	Skid control ECU

HINT:

There is a case that hand-held tester cannot be used when ECU is abnormal.

5 Check operation of the ABS warning light.

In case of using the hand-held tester:

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check that "ON" and "OFF" of the ABS warning light can be shown on the combination meter by the handheld tester.

In case of not using the hand-held tester: PREPARATION:

- (a) Turn the ignition switch OFF.
- (b) Disconnect the connector from the skid control ECU.
- (c) Turn the ignition switch ON.

CHECK:

Check the ABS warning light goes off.

Check for short circuit in harness and connector between combination meter and skid control ECU, combination meter and DLC3 (See page IN–32). Check ABS solenoid relay circuit (See page DI–237).

DTC

Always ON* Malfunction in ECU VSC Warning Light Circuit

*: VSC warning light

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
Always ON	 There is a malfunction in the ECU internal circuit. Malfunction in power sauce circuit. 	 Power source circuit VSC warning light circuit Charging system Skid control ECU

HINT:

If the fail safe function is activated in VSC system, "VSC" indicator light lights up.

ΟΚ

4 Check operation of the VSC warning light.

In case of using the hand-held tester:

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check that "ON" and "OFF" of the VSC warning light can be shown on the combination meter on the handheld tester.

In case of not using the hand-held tester: PREPARATION:

- (a) Turn the ignition switch OFF.
- (b) Disconnect the connector from the skid control ECU.
- (c) Turn the ignition switch ON.

CHECK:

Check the VSC warning light goes off.

NG

Check for short circuit in harness and connector between combination meter and skid control ECU, combination meter and DLC3 (See page IN–32).
ABS Warning Light Circuit

CIRCUIT DESCRIPTION

If the ECU detects trouble, it lights the ABS warning light while at the same time prohibiting ABS control. At this time, the ECU records a DTC in memory.

Connect terminals Tc and CG of the DLC3 to make the ABS warning light blink and output the DTC.

WIRING DIAGRAM

DI6MN-05

INSPECTION PROCEDURE

HINT:

Troubleshoot in accordance with the chart below for each trouble symptom.

ABS warning light does not light up	*1
ABS warning light remains on	*2

*1: Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using hand-held tester.

*2: After inspection of step 3, start the inspection from step 4 in case of using the hand-held tester and start from step 5 in case of not using hand-held tester.

1	Check operation of the ABS warning light.
•	

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check that "ON" of the ABS warning light can be shown on the combination meter using the hand-held tester.

NG

2 Check ABS warning light.

See combination meter troubleshooting on page BE–2.

 NG
 Repair bulb or combination meter assembly.

 OK
 3

 Check that the ECU connectors are securely connected to the skid control ECU.

 NO
 Connect the connector to the skid control ECU.

 YES

Check for short circuit in harness and connector between DLC3 and skid control ECU (See page IN–32).

DI6QP-07

Brake Warning Light Circuit

CIRCUIT DESCRIPTION

The brake warning light lights up when the brake fluid is insufficient, the parking brake is applied or the EBD is defective.

WIRING DIAGRAM

INSPECTION PROCEDURE 1 Check parking brake switch circuit (See page BE-2). NG Repair or replace parking brake switch circuit. OK 2 Check brake fluid level warning switch circuit (See page BE-2). Repair or replace brake fluid level warning NG switch circuit. OK 3 Is DTC output for ABS? Check DTC on page DI-205. YES Repair circuit indicated by the output code. NO 4 Check brake warning light. See combination meter troubleshooting on page BE-2. NG Repair or replace combination meter. ΟΚ Check and replace Skid control ECU.

SLIP Indicator Light Circuit

CIRCUIT DESCRIPTION

The SLIP indicator blinks during TRC & VSC operation.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check operation of the SLIP indicator light.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

NG

Check that "ON" and "OFF" of the SLIP indicator light can be shown on the combination meter by the handheld tester.

2	Check that the SLIP indicator light is on for 3 seconds soon after ignition switch has been turned ON.
	OK Check and replace skid control ECU.
NG	
3	Check SLIP indicator light.
See coi	mbination meter troubleshooting on page BE–68.
	NG Repair bulb or combination meter assembly (See page BE–66).

ОК

4	Check for open and short circuit in harness and connector between skid control ECU and SLIP indicator light (See page IN–32).			
	NG Repair or replace harness or connector.			
ОК				
Chec	k and replace skid control ECU.			

VSC Buzzer Circuit

CIRCUIT DESCRIPTION

The VSC buzzer sounds during VSC operation.

WIRING DIAGRAM

DI1HB-06

INSPECTION PROCEDURE

HINT:

Start inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check operation of the VSC buzzer.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

NG

2

Check that VSC buzzer sounds "ON" and "OFF" with the hand-held tester.

F02192

ок

3	Check fo
Ŭ	ECU and

k for open and short circuit in harness and connector between skid control and VSC buzzer (See page IN–32).

οκ

Check and replace skid control ECU.

DI0X4-11

Tc Terminal Circuit

CIRCUIT DESCRIPTION

Connecting terminals Tc and CG of the DLC3 causes the ECU to display the DTC by flashing the ABS warning light and VSC warning light.

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check voltage between terminals Tc and CG of the DLC3.

PREPARATION: Turn the ignition switch ON. CHECK: Measure voltage between terminal Tc and CG of DLC3. OK: Voltage: 10 – 14 V

If ABS warning light and VSC warning light does not blink even after Tc and CG have been connected, the ECU may be defective.

DI0X6-11

Ts Terminal Circuit

CIRCUIT DESCRIPTION

In the sensor check mode, a malfunction of the speed sensor that cannot be judged when the vehicle is stopped is judged while driving.

Transition to the sensor check mode can be performed by connecting terminals Ts and CG of the DLC3 and turning the ignition switch from OFF to ON.

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check voltage between terminals Ts and CG of DLC3.

CHECK:

- (a) Turn the ignition switch ON.
- (b) Measure voltage between terminals Ts and CG of DLC3.

OK:

Voltage: 10 – 14 V

If ABS warning light does not blink even after Ts and CG have been connected, the ECU may be defective.

DI1HC-13

Check for Fluid Leakage

Check for fluid leakage from actuator or hydraulic lines.

SUPPLEMENTAL RESTRAINT SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

DI6OW-08

DI6OX-01

CUSTOMER PROBLEM ANALYSIS CHECK

Supplemental Restraint System Check Sheet Inspective Name				or's						
				Reg	jistration No					
Customer's Name				Reg	jistration Yea	ar		1	1	
			-	Frame No.						
Date Vehicle Brought In	1	Ι		Odo	ometer Read	ing				km Miles
Date Problem Occurr	ed							1	1	
Weather		□ Fine		oudy	□Rainy		Snowy	۵] Other	
Temperature Approx.										
Vehicle Operation		ت C ا ا ا	∃ Idling onsta Other	g nt speed	□ Ac	celeratio	on 🗆	Decelera	ation]	
Road Conditions										
Details Of Problem										
Vehicle Inspection, Re ry Prior to Occurrence function (Including Su tal Restraint System)	pair Histo- of Mal- ipplemen-									
Diagnosis System Inspection										

SRS Warning Light Inspection	1st Time	□ Remains ON	□ Sometimes Lights Up □ Does Not Light Up
	2nd Time	□ Remains ON	□ Sometimes Lights Up □ Does Not Light Up
DTC Inspection	1st Time	Normal Code	□ Malfunction Code [Code.]
	2nd Time	Normal Code	□ Malfunction Code [Code.]

PRE-CHECK

1. SRS WARNING LIGHT CHECK

- (a) Turn the ignition switch to the ON position and check that the SRS warning light lights up.
- (b) Check that the SRS warning light goes out after approx.6 seconds.

HINT:

- When the ignition switch is at ON and the SRS warning light remains on or flashes, the airbag sensor assembly has detected a malfunction code.
- If, after approx. 6 seconds have elapsed, the SRS warning light sometimes lights up or the SRS warning light lights up even when the ignition switch is OFF, a short in the SRS warning light circuit can be considered likely. Proceed to "SRS warning light circuit malfunction" on page DI-434.

2. DTC CHECK (Using diagnosis check wire)

- (a) Present troubles codes: Output the DTC.
 - (1) Turn the ignition switch to the ON position and wait for approx. 20 seconds.
 - (2) Using SST, connect terminals Tc and CG of the DLC3.
 - SST 09843-18020

NOTICE:

Pay due attention to the terminal connecting position to avoid a malfunction.

- (b) Past troubles codes:
 - Output the DTC.
 - (1) Using service wire, connect terminals Tc and CG of the DLC3.
 - SST 09843-18020
 - (2) Turn the ignition switch to the ON position and wait for approx. 20 seconds.

NOTICE:

Pay due attention to the terminal connecting position to avoid a malfunction.

DI6OY-08

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

(c) Read the DTC.

Read the 2–digit DTC as indicated by the number of times the SRS warning light blinks. As an example, the blinking patterns, normal, 11 and 31 are shown in the illustration.

Normal code indication

The light will blink 2 times per second.

Malfunction code indication The first blinking output indicates the first digit of a 2–digit DTC. After a 1.5–second pause, the second blinking output will indicate the second digit.

If there are 2 or more codes, there will be a 2.5–second pause between each code. After all the codes have been output, there will be a 4.0–second pause and they will all be repeated. HINT:

- In the event of a number of trouble codes, indication will start from the smallest numbered code.
- If a DTC is not output or a DTC is output without terminal connection, proceed to the Tc terminal circuit inspection on page DI–439.

3. DTC CHECK (Using hand-held tester)

- (a) Hook up the hand-held tester to the DLC3.
- (b) Read the DTCs by following the prompts on the tester screen.

HINT:

Please refer to the hand-held tester operator's manual for further details.

4. DTC CLEARANCE (Not using service wire)

When the ignition switch is turned off, the diagnostic trouble code is cleared.

HINT:

DTC might not be cleared by turning the ignition switch OFF. In this case, proceed to the next step.

- 5. DTC CLEARANCE (Using service wire)
- (a) Connect the 2 service wires to terminals Tc and A/B of DLC3.
- (b) Turn the ignition switch to ON and wait for approx. 6 seconds.

(c) Starting with the Tc terminal, ground alternately terminal Tc and terminal A/B twice each in cycles of 1.0 second. Make sure that the terminals are grounded. Ensure the terminal Tc remain grounded.

HINT:

When alternately grounding terminals Tc and AB, release ground from one terminal and immediately ground the other terminal within an interval of 0.2 seconds.

If DTCs are not cleared, repeat the above procedure until the codes are cleared.

(d) Several seconds after doing the clearing procedure, the SRS warning light will blink in a 50 – m sec. cycle to indicate the codes which have been cleared.

6. DTC CLEARANCE (Using hand-held tester)

- (a) Hook up the hand-held tester to the DLC3.
- (b) Clear the DTCs by following the prompts on the tester screen.

HINT:

Please refer to the hand-held tester operation's manual for further details.

LEXUS RX300 (RM785E)

7. RELEASE METHOD OF AIRBAG ACTIVATION PRE-VENTION MECHANISM

An airbag activation prevention mechanism is built into the connector for the squib circuit of the SRS.

When release of the airbag activation prevention mechanism is directed in the troubleshooting procedure, as shown in the illustration of the connectors on the next pages, insert paper which has the same thickness as the male terminal between the terminal and the short spring.

CAUTION:

Never release the airbag activation prevention mechanism on the squib connector.

NOTICE:

- Do not release the airbag activation prevention mechanism unless specifically directed by the troubleshooting procedure.
- If the inserted paper is too thick the terminal and short spring may be damaged, so always use paper with the same thickness as the male terminal.

DIAGNOSTIC TROUBLE CODE CHART

If a malfunction code is displayed during the DTC check, check the circuit listed for that code in the table below (Proceed to the page given for that circuit.).

DTC No. (See Page)	Detection Item	Trouble Area	SRS Warning Light
B0100/13 (DI–318)	Short in D squib circuit	Steering wheel pad (squib) Spiral cable Airbag sensor assembly Wire harness	ON
B0101/14 (DI–323)	• Open in D squib circuit	 Steering wheel pad (squib) Spiral cable Airbag sensor assembly Wire harness 	ON
B0102/11 (DI–327)	• Short in D squib circuit (to ground)	 Steering wheel pad (squib) Spiral cable Airbag sensor assembly Wire harness 	ON
B0103/12 (DI–331)	• Short in D squib circuit (to B+)	 Steering wheel pad (squib) Spiral cable Airbag sensor assembly Wire harness 	ON
B0105/53 (DI–335)	Short in P squib circuit	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
B0106/54 (DI–339)	Open in P squib circuit	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
B0107/51 (DI–342)	Short in P squib circuit (to ground)	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
B0108/52 (DI–345)	Short in P squib circuit (to B+)	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
B0110/43 (DI–348)	• Short in side squib (RH) circuit	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness 	Blink
B0111/44 (DI–352)	Open in side squib (RH) circuit	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness 	Blink
B0112/41 (DI–358)	Short in side squib (RH) circuit (to ground)	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness 	Blink
B0113/42 (DI–358)	• Short in side squib (RH) circuit (to B+)	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness 	Blink
B0115/47 (DI–361)	• Short in side squib (LH) circuit	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness 	Blink
B0116/48 (DI–365)	• Open in side squib (LH) circuit	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness 	Blink

DI6OZ-08

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

DTC No. (See Page)	Detection Item	Trouble Area	SRS Warning Light
B0117/45 (DI–368)	• Short in side squib (LH) circuit (to ground)	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness 	Blink
B0118/46 (DI–371)	• Short in side squib (LH) circuit (to B+)	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness 	Blink
B0130/63 (DI–374)	• Short in P/T squib (RH) circuit	 Seat belt pretensioner RH (squib) Airbag sensor assembly Wire harness 	Blink
B0131/64 (DI–378)	• Open in P/T squib (RH) circuit	 Seat belt pretensioner RH (squib) Airbag sensor assembly Wire harness 	Blink
B0132/61 (DI–381)	• Short in P/T squib (RH) circuit (to ground)	 Seat belt pretensioner RH (squib) Airbag sensor assembly Wire harness 	Blink
B0133/62 (DI–384)	• Short in P/T squib (RH) circuit (to B+)	 Seat belt pretensioner RH (squib) Airbag sensor assembly Wire harness 	Blink
B0135/73 (DI–387)	• Short in P/T squib (LH) circuit	 Seat belt pretensioner LH (squib) Airbag sensor assembly Wire harness 	Blink
B0136/74 (DI–391)	• Open in P/T squib (LH) circuit	 Seat belt pretensioner LH (squib) Airbag sensor assembly Wire harness 	Blink
B0137/71 (DI–394)	• Short in P/T squib (LH) circuit (to ground)	 Seat belt pretensioner LH (squib) Airbag sensor assembly Wire harness 	Blink
B0138/72 (DI–397)	• Short in P/T squib (LH) circuit (to B+)	 Seat belt pretensioner LH (squib) Airbag sensor assembly Wire harness 	Blink
B1100/31 (DI–400)	 Airbag sensor assembly malfunction 	Airbag sensor assembly	ON
B1140/32 (DI–402)	 Side airbag sensor assembly (RH) malfunction 	 Side airbag sensor assembly (RH) Airbag sensor assembly Wire harness 	Blink
B1141/33 (DI–410)	 Side airbag sensor assembly (LH) malfunction 	 Side airbag sensor assembly (LH) Airbag sensor assembly Wire harness 	Blink
B1156/B1157/ 15 (DI–418)	 Front airbag sensor (RH) malfunction 	 Front airbag sensor (RH) Airbag sensor assembly Instrument panel wire harness Engine room No. 2 wire harness 	ON
B1158/B1159/ 16 (DI–426)	Front airbag sensor (LH) malfunction	 Front airbag sensor (LH) Airbag sensor assembly Instrument panel wire harness 	ON
Normal	System normal	_	OFF
(DI-431)	Voltage source drop	Battery Airbag sensor assembly	ON

HINT:

• When the SRS warning light remains lit up and the DTC is the normal code, this means a voltage source drops.

This malfunction is not stored in memory by the airbag sensor assembly and if the power source voltage returns to normal, the SRS warning light will automatically go out.

- When 2 or more codes are indicated, the codes will be displayed in numeral order starting from the lowest numbered code.
- If a code not listed on the chart is displayed, the airbag sensor assembly is faulty.

PARTS LOCATION

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

Side Airbag Assembly (LH)

DI6P0-07

H05133

TERMINALS OF ECU

No.	Symbol	Terminal Name		
А	_	Electrical Connector Check Mechanism		
В	_	Electrical Connector Check Mechanism		
A28 – 3	LA	SRS Warning Light		
A28 – 5	IG2	Power Source		
A28 – 6	IG1	Power Source		
A28 – 9	+SR	Front Airbag Sensor (RH)		
A28 – 10	P+	Squib (Passenger)		
A28 – 11	P–	Squib (Passenger)		
A28 – 12	SIL	Diagnosis		
A28 – 13	D-	Squib (Driver)		
A28 – 14	D+	Squib (Driver)		
A28 – 15	+SL	Front Airbag Sensor (LH)		
A28 – 19	Тс	Diagnosis		
A28 – 20	–SR	Front Airbag Sensor (RH)		
A28 – 23	GSW2	ECM		
A28 – 26	–SL	Front Airbag Sensor (LH)		
A28 – 27	E1	Ground		
A28 – 28	E2	Ground		
A27 – 1	PL-	Squib (Seat Belt Pretensioner, LH)		
A27 – 2	PL+	Squib (Seat Belt Pretensioner, LH)		
A27 – 5	SFL-	Squib (Side, LH)		
A27 – 6	SFL+	Squib (Side, LH)		
A27 – 7	VUPL	Side Airbag Sensor (LH)		
A27 – 9	SSL+	Side Airbag Sensor (LH)		
A27 – 10	FSL	Side Airbag Sensor (LH)		

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

No.	Symbol	Terminal Name
A27 – 12	ESL	Side Airbag Sensor (LH)
A29 – 1	SFR+	Squib (Side, RH)
A29 – 2	SFR-	Squib (Side, RH)
A29 – 5	PR+	Squib (Pretensioner, RH)
A29-6	PR-	Squib (Pretensioner, RH)
A29 – 7	ESR	Side Airbag Sensor (RH)
A29 – 9	FSR	Side Airbag Sensor (RH)
A29 – 10	SSR+	Side Airbag Sensor (RH)
A29 – 12	VUPR	Side Airbag Sensor (RH)

DI6P2-05

PROBLEM SYMPTOMS TABLE

Proceed with troubleshooting of each circuit in the table below.

Symptom	Suspect Area	See page
With the ignition switch in ON position, the SRS warning light sometimes lights up after approx. 6 seconds have elapsed.		
 SRS warning light is always lit up even when ignition switch is in the LOCK position. 	SRS warning light circuit	DI-434
With the ignition switch in ON position, the SRS warning light does not light up.		
• DTC is not displayed.		
 SRS warning light is always lit up at the time of DTC check pro- cedure. 	Tc terminal circuit	DI-439
• DTC is displayed without Tc and CG terminal connection.		

CIRCUIT INSPECTION

DTC B0100/13 Short in D Squib Circuit

CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0100/13 is recorded when a short is detected in the D squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0100/13	 Short circuit between D+ wire harness and D- wire harness of squib D squib malfunction Spiral cable malfunction Airbag sensor assembly malfunction 	 Steering wheel pad (D squib) Spiral cable Airbag sensor assembly Wire harness

WIRING DIAGRAM

INSPECTION PROCEDURE

2

Check D squib circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the spiral cable (See page DI–305).

CHECK:

For the connector (on the spiral cable side) between the spiral cable and the steering wheel pad, measure the resistance between D+ and D-.

OK:

Resistance: 1 M Ω or Higher

ΟΚ

DI-320

ΟΚ

PREPARATION:

Turn the ignition switch to LOCK.

- Disconnect negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- Connect the steering wheel pad connector.
- Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.
- Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- Turn the ignition switch to ON, and wait at least for 20 se-
- Clear the DTC stored in memory (See page DI-305).
- Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- Turn the ignition switch to ON, and wait at least for 20 se-
 - Check the DTC (See page DI-305).

DTC B0100/13 is not output.

Codes other than code B0100/13 may be output at this time, but they are not relevant to this check.

NG

Replace steering wheel pad.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.
DI6P4-06

DTC

B0101/14

Open in D Squib Circuit

CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0101/14 is recorded when an open is detected in the D squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0101/14	 Open circuit in D+ wire harness or D- wire harness of squib D squib malfunction Spiral cable malfunction Airbag sensor assembly malfunction 	 Steering wheel pad (D squib) Spiral cable Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-318.

INSPECTION PROCEDURE

NG

Replace airbag sensor assembly.

4 Check D squib. **PREPARATION:** Turn the ignition switch to LOCK. (a) Disconnect negative (-) terminal cable from the battery, (b) D Squib Airbag Spiral and wait at least for 90 seconds. Sensor Cable Assembly (C) Connect the steering wheel pad connector. Connect negative (-) terminal cable to the battery, and (d) wait at least for 2 seconds. CHECK: ON Turn the ignition switch to ON, and wait at least for 20 se-(a) conds. (b) Clear the DTC stored in memory (See page DI–305). Turn the ignition switch to LOCK, and wait at least for 20 (c) DTC B0101/14 DLC3 seconds. (d) Turn the ignition switch to ON, and wait at least for 20 seconds. (e) Check the DTC (See page DI-305). OK: CG DTC B0101/14 is not output. H01003 AB0119 HINT: H10603 H10600 W02044 Codes other than code B0101/14 may be output at this time, but they are not relevant to this check. NG Replace steering wheel pad. OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6P5-01

DTC

B0102/11

Short in D Squib Circuit (to Ground)

CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0102/11 is recorded when a ground short is detected in the D squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	 Short circuit in D squib wire harness (to ground) 	Steering wheel pad (D squib)
B0102/11	D squib malfunction	Spiral cable
	Spiral cable malfunction	Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-318.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

3 Check airbag sensor assembly.

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect D+ and D- of the connector (on the spiral cable side) between the spiral cable and the steering wheel pad.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See step 5 on page DI–305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI–305).

OK:

DTC B0102/11 is not output.

HINT:

Codes other than code B0102/11 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

4 Check D squib. **PREPARATION:** Turn the ignition switch to LOCK. (a) Disconnect negative (-) terminal cable from the battery, (b) Airbag Spiral and wait at least for 90 seconds. Sensor Cable Assembly (c) Connect the steering wheel pad connector. D Squib Connect negative (-) terminal cable to the battery, and (d) wait at least for 2 seconds. CHECK: ON Turn the ignition switch to ON, and wait at least for 20 se-(a) conds. (b) Clear the DTC stored in memory (See step 5 on page DTC B0102/11 DI-305). DLC3 Turn the ignition switch to LOCK, and wait at least for 20 (c) seconds. Turn the ignition switch to ON, and wait at least for 20 se-(d) conds. CG Tc (e) Check the DTC (See page DI-305). OK: H01003 AB0119 DTC B0102/11 is not output. H10600 W02042 H10606 HINT: Codes other than code B0102/11 may be output at this time, but they are not relevant to this check. NG Replace steering wheel pad.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6P6-06

DTC

B0103/12

Short in D Squib Circuit (to B+)

CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0103/12 is recorded when a B+ short is detected in the D squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	 Short circuit in D squib wire harness (to B+) 	Steering wheel pad (D squib)
B0103/12	D squib malfunction	Spiral cable
	Spiral cable malfunction	Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-318.

INSPECTION PROCEDURE

3 Check airbag sensor assembly.

PREPARATION:

- Connect the connector to the airbag sensor assembly. (a)
- Using a service wire, connect D+ and D- of the connector (b) (on the spiral cable side) between the spiral cable and the steering wheel pad.
- Connect negative (-) terminal cable to the battery, and (C) wait at least for 2 seconds.

CHECK:

- Turn the ignition switch to ON, and wait at least for 20 se-(a) conds.
- (b) Clear the DTC stored in memory (See step 5 on page DI-305).
- Turn the ignition switch to LOCK, and wait at least for 20 (C) seconds.
- Turn the ignition switch to ON, and wait at least for 20 se-(d) conds.
- (e) Check the DTC (See page DI-305).

OK:

DTC B0103/12 is not output. HINT:

NG

Codes other than code B0103/12 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

NG Replace steering wheel pad.

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6P7-07

DTC

B0105/53

Short in P Squib Circuit

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0105/53 is recorded when a short is detected in the P squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	Short circuit in P squib wire harness	 Front passenger airbag assembly (P squib)
B0105/53	P squib malfunction	Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

INSPECTION PROCEDURE

2

P Squib

Airbag

Sensor Assembly

P +

H02251

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the front passenger airbag assembly and the airbag sensor assembly (See page DI–305).

CHECK:

For the connector (on the front passenger airbag assembly side) between the front passenger airbag assembly and the airbag sensor assembly, measure the resistance between P+ and P-.

OK:

Resistance: 1 M Ω or Higher

Repair or replace harness or connector between front passenger airbag assembly and airbag sensor assembly.

ΟΚ

R14286

H02142

OK

LEXUS RX300 (RM785E)

wait at least for 2 seconds. Turn the ignition switch to LOOK, and wait at least for 20

- Turn the ignition switch to ON, and wait at least for 20 se-
- Clear the DTC stored in memory (See page DI-305).
- Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- Turn the ignition switch to ON, and wait at least for 20 se-
 - Check the DTC (See page DI-305).

DTC B0105/53 is not output.

Codes other than code B0105/53 may be output at this time, but they are not relevant to this check.

Replace front passenger airbag assembly.

DI6P8-01

DTC

B0106/54

Open in P Squib Circuit

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0106/54 is recorded when an open is detected in the P squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0106/54	 Open circuit in P+ wire harness or P- wire harness of squib P squib malfunction Airbag sensor assembly malfunction 	 Front passenger airbag assembly (P squib) Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-335.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

ОК

NG

Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6P9-01

DTC

B0107/51

Short in P Squib Circuit (to Ground)

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0107/51 is recorded when ground short is detected in the P squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	Short circuit in P squib wire harness (to ground)	 Front passenger airbag assembly (P squib)
B0107/51	P squib malfunction	Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-335.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).	
2	Check P squib circuit.	
P Squi	ib Airbag Sensor Assembly P+	CHECK: For the connector (on the front passenger airbag assembly side) between the front passenger airbag assembly and the airbag sensor assembly, measure the resistance between P+ and body ground. OK: Resistance: 1 MΩ or Higher

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect P+ and P- of the connector (on the front passenger airbag assembly side) between the front passenger airbag assembly and the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See step 5 on page DI–305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI–305).

OK:

DTC B0107/51 is not output.

HINT:

Codes other than code B0107/51 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PA-01

DTC

B0108/52

Short in P Squib Circuit (to B+)

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0108/52 is recorded when a B+ short is detected in the P squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	Short circuit in P squib wire harness (to B+)	 Front passenger airbag assembly (P squib)
B0108/52	P squib malfunction	Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-335.

INSPECTION PROCEDURE

1	Prepare for inspection (See	step 1 on page DI–431).
2	Check P squib circuit.	
P • • •	Airbag Sensor Assembly ON	 CHECK: (a) Turn the ignition switch to ON. (b) For the connector (on the front passenger airbag assembly side) between the front passenger airbag assembly and the airbag sensor assembly, measure the voltage between the P+ and body ground. OK: Voltage: 0 V
H01022 AB0119 H02146	L V H04524	NG Repair or replace harness or connector be- tween front passenger airbag assembly and air- bag sensor assembly.

HINT:

Codes other than code B0108/52 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness. DTC

B0110/43

Short in Side Squib (RH) Circuit

CIRCUIT DESCRIPTION

The side squib (RH) circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0110/43 is recorded when a short is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0110/43	 Short circuit between SFR+ wire harness and SFR- wire harness of squib Side squib (RH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI–431).

2

Check side squib (RH) circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the side airbag assembly (RH) (See page DI–305).

CHECK:

For the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly, measure the resistance between SFR+ and SFR–.

OK:

Resistance: 1 M Ω or Higher

NG

Repair or replace harness or connector between side airbag assembly (RH) and airbag sensor assembly.

ОК

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PC-03

DTC

B0111/44

Open in Side Squib (RH) Circuit

CIRCUIT DESCRIPTION

The side squib (RH) circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0111/44 is recorded when an open is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0111/44	 Open circuit in SFR+ wire harness or SFR- wire harness of squib Side squib (RH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-348.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

3 Check airbag sensor assembly.

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See page DI-305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI–305).

OK: DTC B0111/44 is not output.

HINT:

4Codes other than code B0111/44 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PD-03

B0112/41 Short in Side Squib (RH) Circuit (to Ground)

CIRCUIT DESCRIPTION

DTC

The side squib (RH) circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0112/41 is recorded when ground short is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0112/41	Short circuit in side squib (RH) wire harness (to ground)	Side airbag assembly (RH)
	Side squib (RH) malfunction	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-348.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

SF

Squib (RH)

DLC3

Tc

CG

H01020 H16278 AB0119

10600 H0106

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

Airbag

Sensor

SFR+

Assembly

ON

DTC B0112/41

[[]]

- (a) Turn the ignition switch to ON and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See step 5 on page DI–305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI–305).

OK:

H16619

DTC B0112/41 is not output.

HINT:

Codes other than code B0112/41 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PE-03

DTC

B0113/42

Short in Side Squib (RH) Circuit (to B+)

CIRCUIT DESCRIPTION

The side squib (RH) circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0113/42 is recorded when a B+ short is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0113/42	 Short circuit in side squib (RH) wire harness (to B+) Side squib (RH) malfunction 	Side airbag assembly (RH)Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-348.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–305).
2	Check side squib (RH) circuit.

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the connector (on the front side airbag assembly side) between the front side airbag assembly (RH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See step 5 on page DI–305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI-305).

OK:

DTC B0113/42 is not output.

HINT:

Codes other than code B0113/42 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

DI-360

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PF-05

DTC

B0115/47

Short in Side Squib (LH) Circuit

CIRCUIT DESCRIPTION

The side squib (LH) circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0115/47 is recorded when a short is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0115/47	 Short circuit between SFL+ wire harness and SFL- wire harness of squib Side squib (LH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (LH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

Squib (LH)

INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI–431).

2 Check side squib (LH) circuit. PREPARATION:

SFL+

H16623

Airbag

Sensor

SFL-

Assembly

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the side airbag assembly (LH) (See page DI–305).

CHECK:

For the connector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly, measure the resistance between SFL+ and SFL–.

OK:

Resistance: 1 M Ω or Higher

NG

Repair or replace harness or connector between side airbag assembly (LH) and airbag sensor assembly.

ОК

H01019 H16275

OK

To make sure of this, use the simulation method to check.

DI6PG-03

DTC

B0116/48

Open in Side Squib (LH) Circuit

CIRCUIT DESCRIPTION

The side squib (LH) circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0116/48 is recorded when an open is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0116/48	 Open circuit in SFL+ wire harness or SFL- wire harness of squib Side squib (LH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (LH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-361.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).	

NG

Replace side airbag sensor assembly.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PH-03

DTC B0117/45 Short in Side Squib (LH) Circuit (to Ground)

CIRCUIT DESCRIPTION

The side squib (LH) circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0117/45 is recorded when ground short is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0117/45	Short circuit in side squib (LH) wire harness (to ground) Side squib (LH) malfunction	Side airbag assembly (LH) Airbag sensor assembly
5611716	Airbag sensor assembly malfunction	• Wire harness

WIRING DIAGRAM

See page DI-361.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).	

ОК

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFL+ and SFL– of the connector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See step 5 on page DI–305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI-305).

OK:

DTC B0117/45 is not output.

HINT:

Codes other than code B0117/45 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PI-03

DTC

B0118/46

Short in Side Squib (LH) Circuit (to B+)

CIRCUIT DESCRIPTION

The side squib (LH) circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0118/46 is recorded when a B+ short is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	• Short circuit in side squib (LH) wire harness (to B+)	Side airbag assembly (LH)
B0118/46	Side squib (LH) malfunction	Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-361.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).	
2	Check side squib (LH) circuit.	

DI-372

HINT:

Codes other than code B0118/46 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness. DTC

B0130/63

Short in P/T Squib (RH) Circuit

CIRCUIT DESCRIPTION

The P/T squib (RH) circuit consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0130/63 is recorded when a short is detected in the P/T squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0130/63	 Short circuit between PR+ wire harness and PR- wire harness of squib P/T squib (RH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI–431).

2

Check P/T squib (RH) circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the seat belt pretensioner (RH) (See page DI–305).

CHECK:

For the connector (on the seat belt pretensioner side) between the seat belt pretensioner (RH) and the airbag sensor assembly, measure the resistance between PR+ and PR-.

OK:

Resistance: 1 M Ω or Higher

NG

Repair or replace harness or connector between seat belt pretensioner (RH) and airbag sensor assembly.

ок

DI-376

ΟΚ

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

To make sure of this, use the simulation method to check.

DI0PK-00	

DTC

B0131/64

Open in P/T Squib (RH) Circuit

CIRCUIT DESCRIPTION

The P/T squib circuit (RH) consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0131/64 is recorded when an open is detected in the P/T squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0131/64	 Open circuit in PR+ wire harness or PR- wire harness of squib P/T squib (RH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-374.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).	

ОК

ON

DTC B0131/64

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect PR+ and PR- of the connector (on the seat belt pretensioner side) between the seat belt pretensioner (RH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See page DI-305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI-305).

OK:

H16630

DTC B0131/64 is not output.

HINT:

Codes other than code B0131/64 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

ΟΚ

PR+

DLC3

Tc

CG

H01020 H16273 AB0119 H10600 H01083 PR-

DI-379

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-381

DI6PL-06

DTC

B0132/61

Short in P/T Squib (RH) Circuit (to Ground)

CIRCUIT DESCRIPTION

The P/T squib (RH) circuit consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0132/61 is recorded when a ground short is detected in the P/T squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	Short circuit in P/T squib (RH) wire harness (to ground)	Seat belt pretensioner (RH)
B0132/61	 P/T squib (RH) malfunction 	Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-374.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

OK

DI-382

DTC B0132/61 is not output.

HINT:

Codes other than code B0132/61 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PM-06

DTC

B0133/62

Short in P/T Squib (RH) Circuit (to B+)

CIRCUIT DESCRIPTION

The P/T squib (RH) circuit consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0133/62 is recorded when a B+ short is detected in the P/T squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0133/62	 Short circuit in seat belt pretensioner (RH) wire harness (to B+) P/T squib (RH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-374.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

ОК

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect PR+ and PR- of the connector (on the seat belt pretensioner side) between the seat belt pretensioner (RH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See step 5 on page DI–305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI-305).

OK:

DTC B0133/62 is not output.

HINT:

Codes other than code B0133/62 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PN-07

DTC

B0135/73

Short in P/T Squib (LH) Circuit

CIRCUIT DESCRIPTION

The P/T squib (LH) circuit consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0135/73 is recorded when a short is detected in the P/T squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0135/73	 Short circuit between PL+ wire harness and PL- wire harness of squib P/T squib (LH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (LH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).	

2 Check P/T squib (LH) circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the seat belt pretensioner (LH) (See page DI–305).

CHECK:

For the connector (on the seat belt pretensioner side) between the seat belt pretensioner (LH) and the airbag sensor assembly, measure the resistance between PL+ and PL–.

OK:

Resistance: 1 M Ω or Higher

NG

Repair or replace harness or connector between seat belt pretensioner (LH) and airbag sensor assembly.

ок

To make sure of this, use the simulation method to check.

DI6PO-06

DTC

B0136/74

Open in P/T Squib (LH) Circuit

CIRCUIT DESCRIPTION

The P/T squib circuit (LH) consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0136/74 is recorded when an open is detected in the P/T squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0136/74	 Open circuit in PL+ wire harness or PL- wire harness of squib P/T squib (LH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (LH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-387.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

ОК

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DTC

DI6PP-06

B0137/71 Short in P/T Squib (LH) Circuit (to Ground)

CIRCUIT DESCRIPTION

The P/T squib (LH) circuit consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0137/71 is recorded when a ground short is detected in the P/T squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
D0407/74	Short circuit in P/T squib (LH) wire harness (to ground)	Seat belt pretensioner (LH)
B0137/71	• P/T squib (LH) maifunction	• Airbag sensor assembly
	 Airbag sensor assembly malfunction 	Wire harness

WIRING DIAGRAM

See page DI-387.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).

\checkmark

OK

NG

Codes other than code B0137/71 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

ок

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PQ-06

DTC

B0138/72

Short in P/T Squib (LH) Circuit (to B+)

CIRCUIT DESCRIPTION

The P/T squib (LH) circuit consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0138/72 is recorded when a B+ short is detected in the P/T squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0138/72	 Short circuit in seat belt pretensioner (LH) wire harness (to B+) P/T squib (LH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (LH) Airbag sensor assembly Wire harness

WIRING DIAGRAM

See page DI-387.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI–431).	

ок

Replace airbag sensor assembly.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

OK

DI6PR-01

DTC

B1100/31

Airbag Sensor Assembly Malfunction

CIRCUIT DESCRIPTION

The airbag sensor assembly consists of a airbag sensor, safing sensor, drive circuit, diagnosis circuit and ignition control, etc.

It receives signals from the airbag sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

DTC B1100/31 is recorded when occurrence of a malfunction in the airbag sensor assembly is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1100/31	Airbag sensor assembly malfunction	Airbag sensor assembly

INSPECTION PROCEDURE

HINT:

When a malfunction code other than code B1100/31 is displayed at the same time, first repair the malfunction indicated by the malfunction code other than code B1100/31.

1	1 Prepare for inspection (See step 1 on page DI–431).	

DI6PS-04

DTC B1140/32 Side Airbag Sensor Assembly (RH) Malfunction

CIRCUIT DESCRIPTION

The side airbag sensor assembly (RH) consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

DTC B1140/32 is recorded when occurrence of a malfunction in the side airbag sensor assembly (RH) is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1140/32	Side airbag sensor assembly (RH) malfunction	 Side airbag sensor assembly (RH) Wire harness
		Airbag sensor assembly

WIRING DIAGRAM

INSPECTION PROCEDURE

ΟΚ

OK

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

8 Is DTC B1140/32 out put again?

PREPARATION:

- Connect the connector to the side airbag sensor assembly (RH).
- (b) Connect the connector to the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (b) Clear the DTC stored in memory (See step 5 on page DI–305).
- (c) Turn the ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 20 seconds.
- (e) Check the DTC (See page DI–305).

DTC B1140/32 is not output.

HINT:

NG

OK:

Codes other than code B1140/32 may be output at this time, but they are not relevant to this check.

 \rangle Go to step 9.

οκ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

HINT:

Codes other than code B1140/32 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PT-04

DTC B1141/33 Side Airbag Sensor Assembly (LH) Malfunction

CIRCUIT DESCRIPTION

The side airbag sensor assembly (LH) consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

DTC B1141/33 is recorded when occurrence of a malfunction in the side airbag sensor assembly (LH) is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1141/33	Side airbag sensor assembly (LH) malfunction	 Side airbag sensor assembly (LH) Wire harness Airbag sensor assembly

WIRING DIAGRAM

INSPECTION PROCEDURE

ΟΚ

5 Check wire harness.

PREPARATION:

Using a service wire, connect VUPL and FSL of the connector (on the side airbag sensor assembly side) between the side airbag sensor assembly (LH) and the airbag sensor assembly. **CHECK:**

For the connector (on the airbag sensor assembly side) between the side airbag sensor assembly (LH) and the airbag sensor assembly, measure the resistance between VUPL and FSL.

OK:

Resistance: Below 1 Ω

NG \

Repair or replace harness or connector between side airbag sensor assembly (LH) and airbag sensor assembly.

ΟΚ

LEXUS RX300 (RM785E)

YES

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

NG

 \rangle Replace airbag sensor assembly.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PW-07

DTC

B1156/B1157/15

Front Airbag Sensor (RH) Malfunction

CIRCUIT DESCRIPTION

The front airbag sensor (RH) circuit consists of the airbag sensor assembly and front airbag sensor (RH). For details of the function of each component, see OPERATION on page RS–2.

DTC B1156/B1157/15 is recorded when a malfunction is detected in the front airbag sensor (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B1156/B1157/15	• Front airbag sensor (RH) malfunction	 Front airbag sensor (RH) Airbag sensor assembly Wire harness Engine room No. 2 wire harness

WIRING DIAGRAM

INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI–431).

ΟΚ

LEXUS RX300 (RM785E)

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

To make sure of this, use the simulation method to check.

Repair or replace harness or connector between airbag sensor assembly and engine room No. 2 wire harness.

ΟΚ

Repair or replace harness or connector between airbag sensor assembly and engine room No. 2 wire harness.

Repair or replace harness or connector between airbag sensor assembly and engine room No. 2 wire harness.

DI850-01

DTC

B1158/B1159/16

Front Airbag Sensor (LH) Malfunction

CIRCUIT DESCRIPTION

The front airbag sensor (LH) circuit consists of the airbag sensor assembly and front airbag sensor (LH). For details of the function of each component, see OPERATION on page RS–2.

DTC B1158/B1159/16 is recorded when malfunction is detected in the front airbag sensor (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
		• Front airbag sensor (LH)
B1158/B1159/16	 Front airbag sensor (LH) malfunction 	 Airbag sensor assembly
		Wire harness

WIRING DIAGRAM

INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-431).

OK

3 Check wire harness (to ground).

CHECK:

For the connector (on the airbag sensor assembly side) between the front airbag sensor (LH) and the airbag sensor assembly, measure the resistance between body ground and each of +SL and -SL.

Resistance: 1 M Ω or Higher

Repair or replace harness or connector between front airbag sensor (LH) and airbag sensor assembly.

LEXUS RX300 (RM785E)

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.
ח.	Т	С	
		U	

Normal

Source Voltage Drop

CIRCUIT DESCRIPTION

The SRS is equipped with a voltage–increase circuit (DC–DC converter) in the airbag sensor assembly in case the source voltage drops.

When the battery voltage drops, the voltage–increase circuit (DC–DC converter) functions to increase the voltage of the SRS to normal voltage.

The diagnosis system malfunction display for this circuit is different from other circuits that is when the SRS warning light remains lit up and the DTC is a normal code, source voltage drop is indicated.

Malfunction in this circuit is not recorded in the airbag sensor assembly, and the source voltage returns to normal, the SRS warning light automatically goes off.

DTC No.	Diagnosis
(Normal)	Source voltage drop

WIRING DIAGRAM

DI6PY-09

INSPECTION PROCEDURE

1

Prepare for inspection.

PREPARATION:

- (a) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (b) Remove the steering wheel pad (See page SR-12).
- (c) Disconnect the connector of the front passenger airbag assembly (See page RS–27).
- (d) Disconnect the connector of the side airbag assembly RH and LH (See page RS–39).
- (e) Disconnect the connector of the seat belt pretensioner RH and LH (See page BO–189).
- (f) Disconnect the connectors of the airbag sensor assembly (See page RS–52).
- (g) Disconnect the connector of the front airbag sensor RH and LH (See page RS–57).
- (h) Disconnect the connector of the side airbag sensor assembly RH and LH (See page RS–62).

CAUTION:

Store the steering wheel pad, front passenger airbag assembly and side airbag assemlby with the front surface facing upward.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PZ-06

SRS Warning Light Circuit Malfunction

CIRCUIT DESCRIPTION

The SRS warning light is located on the combination meter.

When the SRS is normal, the SRS warning light lights up for approx. 6 seconds after the ignition switch is turned from the LOCK position to ON position, and then turns off automatically.

If there is a malfunction in the SRS, the SRS warning light lights up to inform the driver of the abnormality. When terminals Tc and CG of the DLC3 are connected, the DTC is displayed by blinking the SRS warning light.

WIRING DIAGRAM

INSPECTION PROCEDURE Always lights up, when ignition switch is in LOCK position

1	Prepare for inspection (See step 1 on page DI–431).

Replace airbag sensor assembly.

Does not light up, when ignition switch is turned to ON

(b) Turn the ignition switch to ON.

CHECK:

Α

H01301

Measure the voltage between body ground and LA terminal of the harness side connector of the airbag sensor assembly. **OK:**

Voltage: 10 – 14 V

ОК

AB0119 H01300

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use simulation method to check.

5 Is new AM2 fuse burnt out again? NO Using simulation method, reproduce malfunction symptoms (See page IN-22). YES

Check harness between AM2 fuse and SRS warning light.

Tc Terminal Circuit

CIRCUIT DESCRIPTION

By connecting terminals Tc and CG of the DLC3 the airbag sensor assembly is set in the DTC output mode. The DTCs are displayed by blinking the SRS warning light.

WIRING DIAGRAM

DI6Q0-08

INSPECTION PROCEDURE If the DTC is not displayed, do the following troubleshooting.

OK:

SRS waning light comes on.

NOTICE:

Pay due attention to the terminal connecting position to avoid a malfunction.

Replace airbag sensor assembly.

If the DTC is displayed without a DTC check procedure, perform the following troubleshooting.

1 Check resistance between terminal Tc of airbag sensor assembly and body ground.

THEFT DETERRENT SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

Troubleshooting of the theft deterrent system is based on the premise that the door lock control system is operating normally. Accordingly, before troubleshooting the theft deterrent system, first make certain that the door lock control system is operating normally.

For troubleshooting use a volt/ohm meter.

Be sure to use troubleshooting procedure appropriate to the diagnostic tool being used. Perform troubleshooting in accordance with the procedure on the following page.

DI611-05

CUSTOMER PROBLEM ANALYSIS CHECK

THEFT DETERRENT SYSTEM Check Sheet

Inspector's name: _____

		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date Vehicle Brought in	/ /	Odometer Reading	km Mile

Date Problem First Occurred		1 /	
Frequency Problem (Dccurs	 □ Constant □ Sometimes (Times per day, month) □ Once only 	
Weather Conditions	Weather	□ Fine □ Cloudy □ Rainy □ Snowy □ Various/Others	
When Problem Occurred	Outdoor temperature	e □ Hot □ Warm □ Cool □ Cold (Approx. °F(°C))	

	□ Theft deterrent system cannot be set.			
	 Indicator light does not flash when the theft deterrent system is set. (It stays ON or does not light at all.) 			
tom	Theft deterrent system does not operate.	 When unlocked using the door lock knob. When the engine hood is opened. 	Malfunction Horns only Self power siren only Hazard warning light only Room light only Door lock operation only	
Problem Symp	System cannot be canceled once set.	□ When door is unlocked using key or wireless door lock control system		
	 System cannot be canceled during warning operation. 	□ When door is unlocked us	ing key or wireless door lock control system.	
	☐ Others.			

DI612-03

DI613-02

PRE-CHECK

1. OUT LINE OF THEFT DETERRENT SYSTEM

When the theft deterrent system detects any theft, it informs people around with flashing lights and sound.

The performance of the theft deterrent system has been improved by adding the lights (HAZARDS) to the existing system.

2. PARTIAL CHANGE OF SYSTEM SETTING METHOD

There are 4 conditions in this system which are disarmed state, arming preparation, armed state and alarm sounding.

- (1) Disarmed state
 - When the alarming function does not operate.
 - When theft deterrent function is not performed.
- (2) Arming preparation
 - Time until transferring to armed state.
 - Theft deterrent function is not performed.
- (3) Armed state

When theft deterrent function is possible.

(4) Alarm sounding:

In this condition, once theft is detected, it is informed using light and sound to people around the vehicle.

Refer to the table for alarming method or time.

	Horn		
Alarmingmethod	Self power siren		
	Roomlight		
Alarmingtime	27.5 seconds		
	(Except room light flashing)		
Alarmingoutput	Continuous 0.25 secs.: (ON)		
	0.25 secs.: (OFF)		

HINT:

Alarming output for hazard is same as the one for the hazard on the vehicle.

In the arming condition when either of doors is unlocked with key not in the key cylinder, force lock signal is output.

DIAGNOSTICS – THEFT DETERRENT SYSTEM

3. ACTIVE ARMING MODE

Disarmed s	state	(Key not inserted in ignition.)
Perform any of the following and the sysWith all doors and engine hood closed	stem will g d, lock all d	o no to "Arming preparation": doors with the wireless remote.
	Arming	nrenaration
	,g	
Perform any of the following and the sys vill return to "Disarmed state":	stem	Perform the following and the system will go on to "Armed state":
 Open any of the doors or engine hood Unlock any of the doors 	d.	• Let 30 seconds elapse with all the doors
• Put the key in the ignition.		
	Arme	d state
Perform any of the following and	Arme Perform ar	ed state
Perform any of the following and the system will return to to the sum of state":	Arme Perform ar to "Alarm s • Open an	ed state hy of the following and the system will go on sounding": hy of the doors.
Perform any of the following and the system will return to to to the doors with the wireless remote	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re	ed state hy of the following and the system will go on sounding": hy of the doors. any of the doors with anything other than the emote
Perform any of the following and the system will return to to to to to the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the	ed state hy of the following and the system will go on sounding": hy of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless
Perform any of the following and the system will return to to to to to to to to to the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the remote. • Open the	ed state hy of the following and the system will go on sounding": hy of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless e engine hood.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the remote. • Open the • Reconne • Turn the	ed state hy of the following and the system will go on sounding": hy of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless e engine hood. ect the battery. ignition from OFF to ON.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the remote. • Open the remote. • Open the • Reconne • Turn the • When th the vehicle	ed state hy of the following and the system will go on sounding": hy of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless e engine hood. ect the battery. ignition from OFF to ON. e radar sensor detects any movement inside e.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the remote. • Open the • Reconne • Turn the • When th the vehicle • Battery t	ed state hy of the following and the system will go on sounding": hy of the doors. any of the doors with anything other than the emote. the back door with anything other than the wireless the engine hood. ect the battery. ignition from OFF to ON. the radar sensor detects any movement inside the battery. igninal short.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the remote. • Open the • Reconne • Turn the • When th the vehicle • Battery t	ed state hy of the following and the system will go on sounding": hy of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless e engine hood. ect the battery. ignition from OFF to ON. e radar sensor detects any movement inside a. terminal short.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the remote. • Open the • Reconne • Turn the • When th the vehicle • Battery t	ed state hy of the following and the system will go on sounding": by of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless e engine hood. ect the battery. ignition from OFF to ON. e radar sensor detects any movement inside a. terminal short.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the remote. • Open the • Reconne • Turn the • When th the vehicle • Battery t	ed state hy of the following and the system will go on sounding": by of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless e engine hood. ect the battery. ignition from OFF to ON. e radar sensor detects any movement inside the eminal short.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the • Reconne • Turn the • When th the vehicle • Battery t	Ad state hy of the following and the system will go on sounding": by of the doors. any of the doors with anything other than the emote. e back door with anything other than the wireless e engine hood. ect the battery. ignition from OFF to ON. e radar sensor detects any movement inside e. ereminal short. Dunding The security horn sounds and hazard lights flash for 27.5 seconds.
Perform any of the following and the system will return to "Disarmed state": • Unlock the doors with the wireless remote.	Arme Perform ar to "Alarm s • Open an • Unlock a wireless re • Open the • Reconne • Turn the • When th the vehicle • Battery t • Battery t	ed state hy of the following and the system will go on sounding": by of the doors. any of the doors with anything other than the amote. be back door with anything other than the wireless the engine hood. be the battery. be radar sensor detects any movement inside be addressed as a sensor detects

	Arme	ed state
 Perform any of the following and the system will return to "Disarmed state": Unlock the doors with the wireless remote. 	Perform a to "Alarm • Open an • Unlock a wireless r • Open th remote. • Open th • Reconn • Turn the • When th the vehicle • Battery	iny of the following and the system will go on sounding": ny of the doors. any of the doors with anything other than the emote. he back door with anything other than the wireless he engine hood. ect the battery. e ignition from OFF to ON. he radar sensor detects any movement inside e. terminal short.
	Alarm s	ounding
Perform any of the following and the s return to "Disarmed state": • Unlock any of the doors open signa the wireless remote	system will I input with	The security horn sounds and hazard lights flash for 27.5 seconds.

(a) Indicator light output:

Condition		Output by alarm system	Output by immobilizer	Output by checking visually
Disarming	With Key	Goes off	Goes off	Goes off
condition	Without key		Blinks	Blinks
Disarming p condition	oreparation	Lights up	Blinks	Lights up
Arming cor	ndition	Goes off	Blinks	Blinks
Alarming c	ondition	Lights up	Blinks	Lights up

HINT:

The indicator light might blink even under the disarming condition. (This is caused by output from the immobilizer) The indicator always blink by output from the immobilizer at any time under the arming condition. Blinking frequency: 0.2: ON 1.8 sec.: OFF

- (b) ON/OFF function of radar sensor:
 - (1) Radar sensor operation condition:

Sensor operation starts:	When the condition for arming preparation condition is met.
Sensor operation stops:	When the condition is transformed to the disarming condition.

(2) Radar sensor ON/OFF switching function: Every time the button of the wireless door lock system is pressed under the arming preparation condition, sensor is switched ON/OFF.

- (c) Compulsion door lock function.
 - (1) This is a control function to lock a door forcibly to prevent someone from invading in the vehicle when the inner door lock knob is unlocked under the arming condition, that is, when the alarming starts. In Europe, when a door is locked with a key the alarm sounds, however doors are not locked forcibly.
 - (2) The setting specifications of the compulsion door lock function change as follows according to whether the double lock system is available or not.

Destinat	tion	Double lock	Compulsion door lock
Europe	חחם	0	Х
		Х	0
	LHD	Х	0
Australia / Ger	neral countries	Х	0

DI614-04

PARTS LOCATION

DI615-04

TERMINALS OF ECU

101920

Symbols (Terminals No.)	Wiring Color	Condition	STD Value
DSWH ↔ E	R–W↔W–B	Engine hood courtesy switch position is OFF. (Engine hood closed)	Below 1 V
(T4–4 ↔ T4–22)		Engine hood courtesy switch position is ON. (Engine hood opened)	10 – 14 V
$UL2 \leftrightarrow E$	$LG-R \leftrightarrow W-B$	Back door key lock and unlock switch position is LOCK.	10 – 14 V
(T4–5 ↔ T4–22)		Back door key lock and unlock switch position is UNLOCK.	Below 1 V
$S+B \leftrightarrow E$ (T4-8 \leftrightarrow T4-22)	$R-Y \leftrightarrow W-B$	Constant	10 – 14 V
$IG \leftrightarrow E$		Ignition switch position is LOCK or ACC.	Below 1 V
(T4–10 ↔ T4–22)	$B-R \leftrightarrow VV-B$	Ignition switch position is ON.	10 – 14 V
+B1 ↔ E (T4–11 ↔ T4–22)	G–B*1 W–L*2 ↔ W–B	Constant	10 – 14 V
$L2 \leftrightarrow E$	$L-W \leftrightarrow W-B$	Back door key lock and unlock switch position is UNLOCK.	10 – 14 V
(T4–13↔T4–22)		Back door key lock and unlock switch position is LOCK.	Below 1 V
$IOUT \leftrightarrow E$	$W \leftrightarrow W - B$	Radar sensor detection invader	Below 1 V
(T4–18↔T4–22)		Constant	10 – 14 V
KSW ↔ E	$L \leftrightarrow W-B$	Key is inserted.	Below 1 V
(T4–19↔T4–22)		Key is not inserted.	10 – 14 V
$E \leftrightarrow Body ground$ (T4–22 $\leftrightarrow Body ground$)	W–B ↔ Body ground	Constant	Below 1 V
HORN ↔ E		Horn switch position is ON.	Below 1 V
(T5–4 ↔ T4–22)	$W-R \leftrightarrow W-B$	Horn switch position is OFF.	10 – 14 V
$CLTS \leftrightarrow E$		Theft deterrent sylstem change condition.	One time
(T5–9 ↔ T4–22)	$ L-B \leftrightarrow W-B $	Contstant	10 – 14 V
$TRIG \leftrightarrow E$		Theft deterrent system is alarming contidion.	Below 1 V
(T5–10↔T4–22)	$Y \leftrightarrow VV - B$	Constant	10 – 14 V
$IND \leftrightarrow \overline{E}$ (T5–12 \leftrightarrow T4–22)	$L \leftrightarrow W-B$	During set preparation.	3-5 V

*1: LHD

*2: RHD

PROBLEM SYMPTOMS TABLE

Proceed to the reference page shown in the matrix chart below for each malfunction symptom and troubleshoot for each circuit.

HINT:

Troubleshooting of the theft deterrent system is based on the premise that the door lock control system is operating normally. Accordingly, before troubleshooting the theft deterrent system, first make certain that the door lock control system is operating normally.

Symptom	Suspect Area	See page
The theft deterrent system cannot be set	 4. Indicator light circuit 5. ECU power source circuit 6. Key unlock warning switch circuit 7. Back door key lock and unlock switch circuit 8. Back door courtesy switch circuit 9. Door key lock and unlock switch circuit 10.Door courtesy switch circuit 11.Door unlock detection switch circuit 12.Engine hood courtesy switch circuit 	DI-453 DI-455 DI-461 DI-463 DI-592 DI-610 DI-612 DI-608 DI-470
The indicator light does not blink when system is set.	Indicator light circuit	DI-453
When the system is set (The system does not operate when the rear door is unlocked).	Door unlock detection switch circuit	DI-612
When the system is set (The system does not operate when the back door is opened by a method other than the key).	Back door courtesy switch circuit	DI-592
When the system is set (The system does not operate when the engine hood is opened).	Engine hood courtesy switch circuit	DI-470
When the system is set (The system does not operate when after 30 seconds put your hand through the window and shake it near the sensor).	Radar sensor circuit	DI-468
While the system is in warning operation (Horns do not sound).	Horn relay circuit	DI-459
While the system is in warning operation (Siren does not sound).	Self power siren circuit	DI-465
While the system is in warning operation (When the siren does not sound or stops soon after it starts).	Self power siren battery	BE-109
While the system is in warning operation (Hazard lights do not flash).	Hazard switch circuit	DI–578
While the system is in warning operation (The door lock is not locked).	Door unlock detection switch circuit	DI-608
System is still set even when a rear door is open	Door courtesy switch circuit	DI-612
Even when the system is not set (Horns sound).	Horn relay circuit	DI-459
Even when the system is not set (Siren sounds).	Self power siren circuit	DI-465
Even when the system is not set (when the siren does not sound or stops soon after it starts).	Self power siren battery	BE-109
Even when the system is not set (Hazard lights do not flash).	Hazard switch circuit	DI-578

CIRCUIT INSPECTION

Indicator Light Circuit

CIRCUIT DESCRIPTION

When the theft deterrent system is preparing to set, this circuit lights up the indicator light. When the system has been set, it continually turns the indicator light ON for 1 second and turns it OFF for 1 second, thus blinking the indicator light.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check theft deterrent indicator using hand-held tester.

PREPARATION:

(a) Connect the hand-held tester to the DLC 3.

(b) Connect terminals Tc and E1 of DLC1.

CHECK:

Check that the theft deterrent in indicator can light in an ACTIVE TEST.

2 Check indicator light (See page BE–109).			
NG Replace the bulb or meter wire harness.			
ок			
3 Check harness and connector between theft deterrent ECU and indicator light indicator light and body ground (See page IN–32).	t ,		
NG Repair or replace harness or connector.			
ΟΚ			
Check and replace theft deterrent ECU.*1			

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown in problem symptom table (See page DI–452).

ECU Power Source Circuit

CIRCUIT DESCRIPTION

This circuit provides power to operate the theft deterrent ECU.

WIRING DIAGRAM

DI84T-01

INSPECTION PROCEDURE

Ignition Switch Circuit

CIRCUIT DESCRIPTION

When the ignition switch is turned to the ACC position, battery positive voltage is applied to the terminal ACC of the ECU. Also, if the ignition switch is turned to the ON position, battery positive voltage is applied to the terminals ACC and IG of the ECU. When the battery positive voltage is applied to the terminal ACC of the ECU while the theft deterrent system is activated, the warning stops. Furthermore, power supplied from the terminals ACC and IG of the ECU is used as power for the door courtesy switch, and position switch, etc.

WIRING DIAGRAM

DI84U-01

INSPECTION PROCEDURE

Check and replace theft deterrent ECU.

DI61A-04

DI-459

Horn Relay Circuit

CIRCUIT DESCRIPTION

When the theft deterrent system is activated, it causes the transistor in the ECU to switch ON and OFF in approximately 0.4 sec. cycles. This switches the horn relay ON and OFF, thus the horns blow (See the wiring diagram below).

In this condition, if any of the following operations is done, the transistor in the ECU goes OFF and the horn relay switches OFF, thus stopping the horns from blowing:

- (1) Unlock the doors with the wireless door lock control system.
- (2) Wait for approximately 30 seconds.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

1

The flow chart below is based on the premise that the horns blow normally whenever the horn switch is operated. If horn operation is not normal when the horn switch is operated, check the horn switch.

Check voltage between terminal HORN of theft deterrent ECU connector and body ground.

PREPARATION:

Disconnect the theft deterrent ECU connectors.

CHECK:

Measure voltage between terminal HORN of theft deterrent ECU connector and body ground.

OK:

Voltage: 10 – 14V

Check and repair harness and connector between theft deterrent ECU and horn relay (See page IN–32).

ок

Check and replace theft deterrent ECU (See page IN–32).

Key Unlock Warning Switch Circuit

CIRCUIT DESCRIPTION

The key unlock warning switch goes ON when the ignition key is inserted in the key cylinder and goes OFF when the ignition key is removed.

The ECU operates the key confinement prevention function while the key unlock warning switch is ON.

WIRING DIAGRAM

DI61F-04

OK

OK

INSPECTION PROCEDURE

1 Check key unlock warning switch. I11309 е-4-2-В

PREPARATION:

Disconnect key unlock warning switch connector. CHECK:

Check continuity between terminal 1 and 2 of key unlock warning switch connector, when the key is inserted into the key cylinder or removed.

OK:

Switch position	Tester connection	Specifiedcondition	
ON (Key inserted)	1 – 2	Continuity	
OFF (Key removed)	_	No continuity	

NG

\rangle	Replace key unlock warning	switch.
-----------	----------------------------	---------

2 Check harness and connectors between ECU and key unlock warning switch, key unlock warning switch and body ground (See page IN-32).

NG

Repair or replace harness or connector.

Check and replace theft deterrent ECU.*1

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown in problem symptom table (See page DI-452).

DI84V-01

Back Door Key Lock and Unlock Switch Circuit

CIRCUIT DESCRIPTION

The back door key lock and unlock switch goes ON when the back door key cylinder is turned to the unlock side with the key.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

1	Check luggage compartment door lock and unlock switch using hand-held tes-
	ter.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the luggage compartment door lock and unlock switch using DATA LIST.

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown in problem symptom table (See page DI–452).

DI-465

DI61I-02

Self Power Siren

CIRCUIT DESCRIPTION

Based on the alarm sounding state input from the theft deterrent ECU (to the TRIG terminal) an alarm is issued.

However, the armed/disarmed state is determined by the CONT terminal, which monitors vehicle status, and input to the TRIG terminal is only accepted from the ECU while armed state is ON.

Moreover, open circuit detection is only carried out while armed state is ON.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

1	Check self power siren using hand-held tester.		
PREPARATION			

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the self power alarm can operated in an ACTIVE TEST.

OK:

The self power alarm should sound.

OK Proceed to next circuit inspection shown in problem symptoms table (See page DI–452).

NG			
2 Check self power siren.			
2 4 3 119175	PREPARATION: Remove the self por CHECK: (a) Case 1: Check termina input to the sir (b) Case 2: Check termina put when the a OK:	wer siren. Il 3 in case of the sys en. I 4 in case of the sirer alarm is triggered.	stem set signal is not n drive signal is not in-
	Tester connection	Condition	Specified condition
	1 – Ground	Constant	Batteryvoltage
	4 – Ground	Constant	No voltage
		When transforming from armed or arming prepara- tion state to disarmed state.	Using an oscilloscope *1
	2 – Ground	When transforming from the arming preparation state to armed state.	Using an oscilloscope *2

*1: wave pattern

3-Ground

Normal condition

Normal condition

Arming condition

Approx. 1.4 V

Battery voltage

Below 1 V

NG
3	Check harness
	(Saa naga IN 24

and connector between ECU and alarm, alarm and body ground (See page IN-32).

Repair or replace harness or connector.

Proceed to next circuit inspection shown in problem symptom table (See page DI-452).

DI61J-02

Radar Sensor (Europe)

CIRCUIT DESCRIPTION

A radio transmitter is in integrated into the doom light.

This creates a spherical electric field inside the vehicle detects intrusion using the Doppler effect caused by movement of an object in the vehicle, and outputs a warning trigger signal to the theft deterrent ECU.

WIRING DIAGRAM

INSPECTION PROCEDURE

1	Check	radar	sensor	O	peration.
				-	

CHECK:

Set the system with a window open, and after 30 seconds put your hand through the window and shake it near the sensor to check if the alarm is triggered.

NG

circuit inspection shown in problem symptom table (See page DI-452).

Engine Hood Courtesy Switch Circuit

CIRCUIT DESCRIPTION

The engine hood courtesy switch is built into the engine hood lock assembly and goes ON when the engine hood is opened and goes OFF when the engine hood is closed.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

1

Check hood courtesy switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the hood courtesy switch using DATA LIST.

DI61H-04

2 Check engine hood courtesy switch.

(a) Remove engine hood lock assembly.

(b) Disconnect engine hood courtesy switch connector.

CHECK:

Check continuity between terminals 1 and 2 when engine hood lock is locked and unlocked.

OK:

Engine hood lock	Tester connection	Specifiedcondition
LOCK	-	No continuity
UNLOCK	1 – 2	Continuity

NG

OK	

3	Check harness and connector between theft deterrent ECU and switch, switch and body ground (See page IN–32).
---	--

NG

Repair or replace harness or connector.

ΟΚ

Check and replace theft deterrent ECU (See page IN–32).

DI08E-18

CRUISE CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshoot in accordance with the procedure on the following page.

CUSTOMER PROBLEM ANALYSIS CHECK

DI08G-07

DI-473

	CRUISE CON	TROL SYSTEM Check Sheet	Inspector's	name:
			Registration No.	
Customer's Name		Registration Year		
			Frame No.	
Date Brou	Vehicle ught in	/ /	Odometer Reading	km Mile

	Date of Problem Occurrence		/	/
Condition of Problem Occurrence	How Often does Problem Occurs	" " Continuous	" " Intermittent (Times a day)
	Vehicle Speed when Problem Occurred		km Mile	

	" " Auto cancel occurs	 Driving condition City driving Freeway Up hill Down hill After cancel occurred, did the driver activate cruise control again? Yes No 		
	Cancel does not occur	 With brake ON Except D position shift At 40 km/h (25 mph) or less When control SW turns to CANCEL position 		
Symptoms	Cruise control malfunction	 Slip to acceleration side Slip to deceleration side Hunting occurs O/D cut off does not occur O/D does not return 		
Switch SET ACCEL				
	Cruise MAIN indicator light	□ Remains ON □ Does not light up □ Blinking		

DTC Check	1st Time	🗆 Normal Code	□ Malfunction Code (Code)
DTC Check	2nd Time	🗆 Normal Code	□ Malfunction Code (Code)

PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Check the indicator.
 - (1) Turn the ignition switch ON.
 - (2) Check that the CRUISE MAIN indicator light comes ON when the cruise control main switch is turned ON, and that the indicator light goes OFF when the main switch is turned OFF.

DI1KS-11

[∗] HINT:

If the indicator check result is not normal, proceed to troubleshooting (See page BE–62) for the combination meter section.

HINT:

If a malfunction occurs in the No. 1 vehicle speed sensor or actuator, etc. during cruise control driving, the ECU actuates AUTO CANCEL of the cruise control and turns on and off the CRUISE MAIN indicator light to inform the driver of a malfunction. At the same time, the malfunction is stored in memory as a DTC.

- (c) Output of DTC using diagnosis check wire.
 - (1) Turn the ignition switch ON.
 - (2) Using SST, connect terminals Tc and CG of DLC3.
 - SST 09843-18020
 - (3) Read the DTC on the CRUISE MAIN indicator light.

HINT:

If the DTC is not output, inspect the diagnosis circuit (See page DI-514).

As an example, the blinking patterns for codes; normal, 11 and 21 are shown in the illustration.

- 2. USING HAND-HELD TESTER
- (a) Hook up the hand-held tester to the DLC3.
- (b) Monitor the ECU data by following the prompts on the tester screen.

HINT:

Hand-held tester has a "Snapshot" function which records the monitored data.

Please refer to the hand-held tester operator's manual for further details.

3. DTC CLEARANCE (ERASE MODE)

HINT:

During in the erase mode, diag detection does not work.

- (a) Drive at about 15 km/h or below.
- (b) Using SST, connect terminals Tc and E1 of DLC3. SST 09843–18020
- (c) Pull the cruise control switch to CANCEL.
- (d) On the above metioned condition, turn on the cruise control main switch 5 times within 3 seconds.

DIAGNOSTICS – CRUISE CONTROL SYSTEM

PROBLEM SYMPTOM CHECK (ROAD TEST)

-) Inspect the SET switch.
 - (1) Push the main switch ON.
 - (2) Drive at a desired speed (40 km/h (25 mph) or higher).
 - (3) Press the control switch to the SET/COAST.
 - (4) After releasing the switch, check that the vehicle cruises at the desired speed.
- (b) Inspect the ACCEL switch.
 - (1) Push the main switch ON.
 - (2) Drive at a desired speed (40 km/h (25 mph) or higher).
 - (3) Check that the vehicle speed increases while the control switch is turned to RES/ACC, and that the vehicle cruises at the set speed when the switch is released.
 - (4) Momentarily raise the control switch upward to the RES/ACC position and then immediately release it. Check that the vehicle speed increases by approx.
 1.5 km/h (Tap-up function).

(c) Inspect the COAST switch.

- (1) Push the main switch ON.
- (2) Drive at a desired speed (40 km/h (25 mph) or higher).
- (3) Check that the vehicle speed decreases while the control switch is turned to SET/COAST, and the vehicle cruises at the set speed when the switch is released.
- (4) Momentarily pull the control switch down to SET/ COAST, and then immediately release it. Check that the vehicle speed decreases by about 1.5 km/h (Tap-down function).

(d) Inspect the CANCEL switch.

- (1) Push the main switch ON.
- (2) Drive at a desired speed (40 km/h (25 mph) or higher).
- (3) When operating one of the following operations, check that the cruise control system is cancelled and that the normal driving mode is reset.
 - Depress the brake pedal
 - Shift to except D position
 - Push the main switch OFF
 - Pull the cruise control switch to CANCEL

(e) Inspect the RESUME switch.

- (1) Push the main switch ON.
- (2) Drive at a desired speed (40 km/h (25 mph) or higher).
- (3) When operating one of the following operations check that the cruise control system is cancelled and that the normal driving mode is reset.
 - Depress the brake pedal
 - Shift to except D position
 - Push the main switch OFF
 - Pull the cruise control switch to CANCEL
- (4) After the control switch is turned to RES/ACC at the driving speed of more than 40 km/h (25 mph), check that the vehicle restores the speed prior to the cancellation.

DIAGNOSTICS - CRUISE CONTROL SYSTEM

5. INPUT SIGNAL CHECK

HINT:

(1) For check No.1 ~ No.3: Turn ignition switch ON.

(2) For check No.4:

- Jack up the vehicle.
- Start the engine.
- Shift to D position.
- (a) Pull the control switch to SET/COAST or RES/ACC position and hold it down or up (1).
- (b) Push the main switch ON (2).
- (c) Check that the CRUISE MAIN indicator light blinks twice or 3 times repeatedly after 3 seconds.
- (d) Turn the SET/COAST or RES/ACC switch OFF.
- (e) Operate each switch as listed in the table below.
- (f) Read the blinking pattern of the CRUISE MAIN indicator light.
- (g) After performing the check, turn the main switch OFF. HINT:

When 2 or more signals are input to the ECU, the lowest numbered code will be displayed 1st.

No.	Operation Method	CRUISE MAIN Indicator Light Blinking Pattern	Diagnosis
1	Turn SET/COAST switch ON	0.25 sec.	SET/COAST switch circuit is normal
2	Turn RES/ACC switch ON		RES/ACC switch circuit is normal
	Turn CANCEL switch ON	ON <u>Switch OFF</u>	CANCEL switch circuit is normal
3	Turn stop light switch ON Depress brake pedal	OFF Switch ON	Stop light switch circuit is normal
	Turn PNP switch OFF (Shift to except D position)	ON <u>Switch ON</u> Light OFF Switch OFF	PNP switch circuit is normal
Δ	Drive at about 40 km/h (25 mph)or higher		Vehicle Speed Sensor is
т	Drive at about 40 km/h (25 mph) or below	ON Light OFF	normal

DIAGNOSTIC TROUBLE CODE CHART

If a malfunction code is displayed during the DTC check, check the circuit listed for that code in the table below and proceed to the appropriate page.

DTC No. (See Page)	Circuit Inspection	Trouble Area
11, 15 (DI–484)	Actuator Motor Circuit	 Actuator motor Harness or connector between cruise control ECU and actuator motor Cruise control ECU
12 (DI–486)	Actuator Magnetic Clutch Circuit	 STOP Fuse Stop light switch Actuator magnetic clutch Harness or connector between cruise control ECU and actuator magnetic clutch, actuator magnetic clutch and body ground Cruise control ECU
14 (DI–490)	Actuator Mechanical Malfunction	 Actuator motor (actuator lock: motor, arm) Cruise control ECU
21 (DI–492)	Open in Vehicle Speed Sensor Circuit	 Combination meter Harness or connector between cruise control ECU and combination meter, combination meter and vehicle speed sensor Vehicle speed sensor Cruise control ECU
23 (DI–495)	Vehicle Speed Signal Abnormal	Vehicle speed sensor Cruise control ECU
41	Cruise control ECU	Cruise control ECU
42	Source voltage drop	Power source
51 (DI–496)	Idle Signal Circuit	 Throttle position sensor Harness or connector between Engine and ECT ECU and throttle position sensor Harness or connector between cruise control ECU and ECM Cruise control ECU

DI08I-13

DI6QT-04

PARTS LOCATION

TERMINALS OF ECU

100293

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
$STP \leftrightarrow GND$		Depress brake pedal	10 – 16 V
(C16–3↔C16–16)	$G-W \leftrightarrow BR$	Release brake pedal	Below 1 V
		Shift to positions except D	Below 1 V
$D \leftrightarrow GND (C16-4 \leftrightarrow C16-16)$	G−B ↔ BR	Shift to D position	10 – 16 V
		Ignition switch ON Cruise control main switch ON	Below 1.2 V
$PI \leftrightarrow GND (C10-5 \leftrightarrow C10-10)$	W−G ↔ BR	Ignition switch ON Cruise control main switch OFF	10 – 16 V
		Ignition switch ON	10 – 16 V
$(C16-10\leftrightarrow C16-16)$	$P-B \leftrightarrow BR$	Ignition switch ON Connect terminals Tc and E1 of diagnostic check connector	Below 1 V
ECT ↔ GND		During driving Gear position 3rd	10 – 16 V
(C16–6 ↔ C16–16)	$R-X \leftrightarrow RK$	During driving Gear position O/D	Below 1 V
MC ↔ GND	L−R \leftrightarrow BR	During cruise control driving COAST switch held ON	9 – 15 V
(C16–7 ↔ C16–16)		During cruise control driving ACC switch held ON	Below 1 V
$L \leftrightarrow GND$		During cruise control driving	9 – 15 V
(C16–8↔C16–16)	$L-I \leftrightarrow BR$	Except during cruise control driving	Below 1 V
B ↔ GND (C16–2 ↔ C16–16)	$B-R \leftrightarrow BR$	Ignition switch ON	10 – 16 V
		Ignition switch ON	10 – 16 V
		Ignition switch ON CANCEL switch held ON	6.0 – 11.0 V
CCS ↔ GND (C16–11 ↔ C16–16)	$L \leftrightarrow BR$	Ignition switch ON SET/COAST switch held ON	4.0 – 7.9 V
		Ignition switch ON RES/ACC switch held ON	2.0-4.6 V
		Ignition switch ON MAIN switch held ON	Below 0.5 V

DI1KT-15

DIAGNOSTICS – CRUISE CONTROL SYSTEM

$SPD \leftrightarrow GND$	$V−W \leftrightarrow BR$	Engine start Car stoppage.	Below 1.5 V or 4.7 – 16 V
(016−12↔016−16)		During driving (Pulse generated).	3 – 7 V
IDL ↔ GND		Ignition switch ON Throttle valve fully opened.	10 – 16 V
(C16–13↔C16–16)		Ignition switch ON Throttle valve fully closed.	Below 1.5 V
OD ↔ GND (C16–14 ↔ C16–16)	Y–G ↔ BR	During cruise control driving OD switch ON.	10 – 16 V
		During cruise control driving OD switch OFF (3rd driving)	Below 1 V
MO ↔ GND		During cruise control driving ACC switch hold ON	9 – 15 V
(C16–15↔C16–16)	$L-B \leftrightarrow BR$	During cruise control driving COAST switch hold ON	Below 1 V
$GND \leftrightarrow Body Ground$ (C16–16 \leftrightarrow Body Ground)	BR ↔ Body Ground	Constant	Below 1 V

PROBLEM SYMPTOMS TABLE

DI08L-	22

DI-483

Symptom	Suspect Area	Seepage
SET not occurring or CANCEL occurring. (DTC is Normal)	 13.Main Switch Circuit (Cruise control switch) 14.Vehicle Speed Sensor 15.Control Switch Circuit (Cruise control switch) 16.Stop Light Switch Circuit 17.Neutral Start Switch Circuit 18.Actuator Motor Circuit 19.Cruise Control Cable 20.Cruise Control ECU 	DI-502 DI-492 DI-502 DI-505 DI-507 DI-484 DI-516 IN-32
SET not occurring or CANCEL occurring.	1. ECU Power Source Circuit	DI-499
Actual vehicle speed deviates above or below the set speed.	 Cruise Control Cable Vehicle Speed Signal Abnormal Electronically Controlled Transmission CommunicationCircuit Actuator Motor Circuit Idle Signal Circuit (Main throttle position sensor) Cruise Control ECU 	DI-516 DI-492 DI-517 DI-484 DI-496 IN-32
Gear shifting frequent between 3rd O/D when driving on uphill road. (Hurting)	 Electronically Controlled Transmission Communication Circuit Cruise Control ECU 	DI-517 IN-32
Cruise control not cancelled, even when brake pedal is depressed.	 Cruise Control Cable Stop Light Switch Circuit Actuator Motor Circuit Cruise Control ECU 	DI516 DI505 DI484 IN32
Cruise control not cancelled, even when transmission is shifted to "N" position.	 Cruise Control Cable Neutral Start Switch Circuit Actuator Motor Circuit Cruise Control ECU 	DI–516 DI–507 DI–484 IN–32
Cruise control not cancelled, even when clutch pedal is depressed.	 Cruise Control Cable Actuator Motor Circuit Cruise Control ECU 	DI–516 DI–484 IN–32
Control switch does not operate. (SET/COAST, ACC/RES, CANCEL not possible)	 Cruise Control Cable Control Switch Circuit Actuator Motor Circuit Cruise Control ECU 	DI–516 DI–510 DI–484 IN–32
SET possible at 40 km/h (25 mph) or less, or CANCEL does not operate at 40 km/h (25 mph) or less.	 Cruise Control Cable Vehicle Speed Signal Abnormal Actuator Motor Circuit Cruise Control ECU 	DI–516 DI–495 DI–484 IN–32
Poor response is in ACCEL and RESUME modes.	 Cruise Control Cable Electronically Controlled Transmission CommunicationCircuit Actuator Motor Circuit Cruise Control ECU 	DI-516 DI-517 DI-484 IN-32
O/D does not resume, even though the road is not uphill.	 Electronically Controlled Transmission Communication Circuit Cruise Control ECU 	DI-517 IN-32
DTC memory is erased.	Cruise Control ECU	IN-32
DTC is not output, or is output when should not be.	 Diagnosis Circuit Cruise Control ECU 	DI–514 IN–32
Cruise MAIN indicator light remains ON or falls to light up.	Cruise MAIN Indicator Light Switch Circuit	DI–514

DI08M-21

CIRCUIT INSPECTION

DTC	11, 15	Actuator Motor Circuit
-----	--------	------------------------

CIRCUIT DESCRIPTION

The actuator motor is operated by signals from the ECU. Acceleration and deceleration signals are transmitted according to changes in the Duty Ratio (See below).

Duty Ratio

The duty ratio is the ratio of the period of continuity in one cycle. For example, if A is the period of continuity in one cycle, and B is the period of non-continuity.

Duty Ratio =
$$\frac{A}{A + B} \times 100$$
 (%) OFF $\int \frac{A}{B} \frac{B}{1 \text{ cycle}}$

DTC No.	Detection Item	Trouble Area
11	Short in actuator motor circuit.	 Actuator motor Harness or connector between cruise control ECU and actuator motor Cruise control ECU
15	Open in actuator motor circuit.	Actuator motor

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check resistance between terminals MO and MC of actuator motor.

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the actuator connector.

CHECK:

Measure resistance between terminals 1 and 2.

HINT:

If control plate is in fully opened or fully closed positions, resistance can not be measured.

```
OK:
```

Resistance: more than 4.2 Ω

 \rangle Replace cruise control actuator.

OK

2 Check for open and short in harness and connectors between cruise control ECU and actuator motor (See page IN–32).

NG

Repair or replace harness or connector.

OK

Check and replace cruise control ECU. (See page IN–32).

DI7IR-02

|--|

CIRCUIT DESCRIPTION

This circuit turns on the magnetic clutch inside the actuator during cruise control operation according to the signal from the ECU. If a malfunction occurs in the actuator or speed sensor, etc. during cruise control operation, the rotor shaft between the motor and control plate is released.

When the brake pedal is depressed, the stop light switch turns on, supplying electrical power to the stop light. Power supply to the magnetic clutch is mechanically cut and the magnetic clutch is turned OFF.

When driving downhill, if the vehicle speed exceeds the set speed by 8 km/h (5 mph), the ECU turns the safety magnet clutch OFF. If the vehicle speed later drops to within 5 km/h (3 mph), cruise control at the set speed is resumed.

DTC No.	Detection Item	Trouble Area
12	Short in actuator magnetic clutch circuit. Open (0.8 sec.) in actuator magnetic clutch circuit.	 STOP Fuse Stop light switch Actuator magnetic clutch Harness or connector between cruise control ECU and actuator magnetic clutch, actuator magnetic clutch and body ground Cruise control ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

PREPARATION:

- (a) Turn ignition switch OFF.
- (b) Disconnect the actuator connector.

CHECK:

Measure resistance between terminals 3 and 4.

OK:

Resistance: 34.65 – 42.35 Ω.

OK

3 Check for open and short in harness and connectors between cruise control ECU and actuator magnetic clutch, actuator magnetic clutch and body ground (See page IN–32).

Check and replace cruise control ECU (See page IN–32).

OK

DTC	14	Actuator Mechanical Malfunction
-----	----	---------------------------------

CIRCUIT DESCRIPTION

The circuit detects the rotation position of the actuator control plate and sends a signal to the ECU.

DTC No.	Detection Item	Trouble Area
		Actuator lock: (motor, arm)
14	Cruise control actuator mechanical malfunction.	Actuator motor
		Cruise control ECU

WIRING DIAGRAM

See page DI-486.

INSPECTION PROCEDURE

1

Check cruise control actuator arm locking operation

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the actuator connector.

CHECK:

Connect the positive (+) lead from the battery to the terminal 3 of actuator and the negative (–) lead to terminal 4. **NOTICE:**

DI080-21

Do not connect the high tension cables to the wrong battery terminal. The cruise control actuator will be damaged. Move the control plate by hand.

OK:

Control plate doesn't move.

 \rangle Replace cruise control actuator.

οк

2

Check cruise control actuator operation.

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the actuator connector.

CHECK:

Connect the positive (+) lead from the battery to terminals 1 and 3 of actuator, connect the negative (–) lead to terminals 2 and 4 of actuator.

OK:

Control arm moves to fully open side

CHECK:

Connect the positive (+) lead from the battery to terminals 2 and 3 of actuator, connect the negative (–) lead to terminals 1 and 4 of actuator.

OK:

Control arm moves to fully closed side

NG

Replace cruise control actuator.

ΟΚ

DI08P-25

DTC	21	Open in Vehicle Speed Sensor Circuit
-----	----	--------------------------------------

CIRCUIT DESCRIPTION

The vehicle speed sensor circuit is sent to cruise control ECU as vehicle speed signal. For each rotation of the shaft, the vehicle speed sensor sends a signal through the combination meter to the cruise control ECU (See the following chart). The ECU calculates the vehicle speed from this pulse frequency.

DTC No.	Detection Item	Trouble Area
21	Speed signal is not input to the cruise control ECU while cruise control is set.	 Combination meter Harness or connector between cruise control ECU and combination meter, combination meter and vehicle speed sensor Vehicle speed sensor Cruise control ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Input signal check.

Input Signal	Indicator Light Blinking Pattern
Drive at about 40 km/h (25 mph) or below	ON Light OFF
Drive at about 40 km/h (25 mph) or higher	Light ON

CHECK:

- (a) See input signal check on page DI-474.
- (b) Check indicator light operation when driving with vehicle speed above 40 km/h (25 mph), and with vehicle speed below 40 km/h (25 mph).

OK:

Vehicle speed above 40 km/h (25 mph): Indicator light blinks Vehicle speed below 40 km/h (25 mph): Indicator light stays on

OK

Check and replace cruise control ECU (See page IN–32).

2	Check speedometer circuit (See Combination meter troubleshooting on page BE–62).	
	NG Repair or replace harness, connector or com- bination meter assembly.	
ОК		
\sim		
3	Check harness and connector between cruise control ECU and combination me- ter, combination meter and vehicle speed sensor (See page IN–32).	
	NG Repair or replace harness or connector.	
ОК		
4	Check vehicle speed sensor (See page BE–68).	
	NG Replace vehicle speed sensor.	
ок		
\sim		
Check and replace cruise control ECU (See page IN–32).		

DI08Q-16

٦

Vehicle Speed Signal Abnormal

CIRCUIT DESCRIPTION

See page DI-492.

DTC No.	Detection Item	Trouble Area
23	Vehicle speed sensor pulse is abnormal.	Vehicle speed sensor Cruise control ECU

WIRING DIAGRAM

See page DI-492.

Т

INSPECTION PROCEDURE

1	Check vehicle speed sensor (See page BE–68).	
	NG Replace vehicle speed sensor.	
ок		

Check and replace cruise control ECU (See page IN–32).

DI3VK-06

DTC	51	Idle Signal Circuit
-----	----	---------------------

CIRCUIT DESCRIPTION

When the idle switch is turned ON, a signal is sent to the ECU. The ECU uses this signal to correct the discrepancy between the throttle valve position and the actuator position sensor value to enable accurate cruise control at the set speed. If the idle switch is malfunctioning, problem symptoms also occur in the engine, so also inspect the engine.

DTC No.	Detection Item	Trouble Area
51	Short in idle signal circuit.	 Harness or connector between Engine and ECT ECU and throttle position sensor Harness on connector between cruise control ECU and En- gine and ECT ECU Cruise control ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check voltage between terminal IDL of cruise control ECU connector and body ground.

PREPARATION:

- (a) Remove the ECU with connector still connected.
- (b) Disconnect the engine and ECT ECU connector.
- (c) Turn ignition switch ON.

CHECK:

Measure voltage between terminal IDL of ECU connector and body ground when the throttle valve is fully closed and fully opened.

OK:

ΟΚ

Throttle valve position	Voltage
Fully opened	10 – 14 V
Fully closed	Below 1.5 V

Proceed to next circuit inspection shown in problem symptom table (See page DI–483).

NG

2 Check harness and connector between engine and ECT ECU and throttle position sensor (See page IN–32).

Repair or replace harness or connector.

ОК

4	Check for open and short in harness and connector between cruise control ECU and engine and ECT ECU (See page IN–32).	
	NG Repair or replace harness or connector.	
ОК		
Chec page	k and replace cruise control ECU (See IN–32).	

ECU Power Source Circuit

CIRCUIT DESCRIPTION

The ECU power source supplies power to the actuator and sensors, etc, when terminal GND and the cruise control ECU case are grounded.

WIRING DIAGRAM

DI08X-23

INSPECTION PROCEDURE

ОК

NG

3 Check resistance between terminal GND of cruise control ECU connector and body ground.

CHECK:

NG

Measure resistance between terminal GND of ECU connector and body ground.

OK:

Resistance: Below 1 Ω

Repair or replace harness or connector.

OK

Check and repair harness and connector between cruise control ECU and battery (See page IN-32).

```
DI-501
```

DI08R-23

Control Switch Circuit (Cruise Control Switch)

CIRCUIT DESCRIPTION

This circuit carries the SET/COAST, RESUME/ACCEL and CANCEL signals (each voltage) to the ECU.

WIRING DIAGRAM

		1
	1	
		l

Input signal check.

Input Signal	Indicator Light Blinking Pattern
SET/COAST switch	ON 2 Pulses
RESUME/ACCEL switch	ON 3 Pulses
CANCEL switch	ON SW OFF OFF SW ON

PREPARATION:

See input signal check on page DI-474.

CHECK:

Check the indicator light operation when each of the SET/ COAST, RESUME/ACCEL and CANCEL is turned on.

OK:

SET/COAST, RESUME/ACCEL switch

The signals shown in the table on the left should be output when each switch is ON. The signal should disappear when the switch is turned OFF.

CANCEL switch

The indicator light goes off when the cancel switch is turned ON.

NG

2 Check voltage between terminals CCS of cruise control ECU connector and body ground.

PREPARATION:

(a) Remove the ECU with connector still connected.

(b) Turn ignition switch ON.

CHECK:

Measure voltage between terminals 18 of ECU connector and body ground, when each of the SET/COAST, RESUME/AC-CEL and CANCEL is turned ON.

Switch position	Resistance (V)	
Neutral	10 – 16 V	
MAIN	Below 0.5 V	
RES/ACC	2.0-4.6 V	
SET/COAST	4.0 – 7.9 V	
CANCEL	6.0 – 11.0 V	

NG

Proceed to next circuit inspection shown in problem symptom table (See page DI–483).

Stop Light Switch Circuit

CIRCUIT DESCRIPTION

When the brake pedal is depressed, the stop light switch sends a signal to the ECU. When the ECU receives this signal, it cancels the cruise control. A fail–safe function is provided so that the cancel functions normally, even if there is a malfunction in the stop light signal circuit. The cancel conditions are: Battery positive voltage at terminal STP–. When the brake is ON, battery positive voltage normally is applied through the STOP fuse and stop light switch to terminal STP– of the ECU, and the ECU turns the cruise control OFF. If the harness connected to terminal STP– has an open circuit, terminal STP– will have battery positive voltage and the cruise control will be turned OFF.

Also, when the brake is ON, the magnetic clutch circuit is cut mechanically by the stop light switch, turning the cruise control OFF. (See page DI–486 for operation of the magnetic clutch)

WIRING DIAGRAM

Refer to DTC 12 on page DI-486.

INSPECTION PROCEDURE

1	Check operation of stop light.	
---	--------------------------------	--

CHECK:

Check that stop light comes ON when brake pedal is depressed, and turns OFF when brake pedal is released.

DI84W-01

DI-505

NG

3 Check voltage between terminal STP- of cruise control ECU connector and body ground.

PREPARATION:

(a) Remove the ECU with connectors still connected.

(b) Turn ignition switch ON.

CHECK:

Measure voltage between terminal STP– of cruise control ECU connector and body ground, when the brake pedal is depressed and released.

OK:

OK

Depressed	10 – 14 V
Released	Below 1 V

Proceed to next circuit inspection shown in problem symptom table (See page DI–483).

4 Check for open in harness and connectors between terminal STP– of cruise control ECU and stop light switch (See page IN–32).

NG

Repair or replace harness or connector.

OK

NG

Check and replace cruise control ECU (See page IN–32).

Neutral Start Switch Circuit

CIRCUIT DESCRIPTION

When the shift position is except D, a signal is sent from the neutral start switch to the ECU. When this signal is input during cruise control driving, the ECU cancels the cruise control.

WIRING DIAGRAM

DI08V-23

Check starter operation.

CHECK:

Check that the starter operates normally and that the engine starts.

ок \

Proceed to next circuit inspection shown in problem symptom table (See page DI–483).

NG

3

Check voltage between terminal D of cruise control ECU connector and body ground.

PREPARATION:

Turn ignition switch ON.

Measure voltage between terminal D of ECU connector and body ground when shifting into D range and other positions. **OK**:

Shift Position	Voltage
D position	10 – 14 V
Otherpositions	Below 1 V

Proceed to next circuit inspection shown in problem symptom table (See page DI–483).

NG

4 Check harness and connector between cruise control ECU and neutral start switch (See page IN–32).

ок

Check and replace cruise control ECU (See page IN-32).

Clutch Switch Circuit

CIRCUIT DESCRIPTION

When the clutch pedal is depressed, the clutch switch sends a signal to the cruise control ECU. When the signal is input to the cruise control ECU during cruise control driving, the cruise control ECU cancels cruise control.

WIRING DIAGRAM

Refer to neutral start switch circuit on page DI-507.

INSPECTION PROCEDURE

Check starter operation.

CHECK:

Check that the starter operates normally and that the engine starts.

Proceed to engine troubleshooting.

DI08W-08

Input signal check. 2

Input Signal	Indicator Light Blinking Pattern	PREPARATION: See input signal check on page DI–474. CHECK:
Clutch switch OFF (Depress clutch pedal)	Light ON SW ON OFF	Check the indicator lights when clutch pedal is depressed. OK: The indicator light goes off when shifting into clutch

pedal is depressed.

ΟΚ

Proceed to next circuit inspection shown in problem symptom table (See page DI-483).

NG

3

Check voltage between terminal D of cruise control ECU and body ground.

PREPARATION:

Turn ignition switch ON.

CHECK:

Measure voltage between terminal D of cruise control ECU connector and body ground when clutch pedal is depressed and pushed in.

OK:

Shift Position	Voltage
Clutch pedal depressed	10 – 14 V
Clutch pedal pushed in	Below 1 V

Proceed to next circuit inspection shown in problem symptom table (See page DI–483).

NG

4 Check for open in harness and connector between ECU and GAUGE fuse (See page IN–32).

ΟΚ

Check and replace cruise control ECU (See page IN-32).

DI090-36

CRUISE MAIN Indicator Light Circuit

CIRCUIT DESCRIPTION

When the cruise control main switch is turned ON, CRUISE MAIN indicator light lights up.

WIRING DIAGRAM

1

Check voltage between terminals PI and GND of cruise control ECU connector.

PREPARATION:

Tun ignition switch ON. CHECK:

Measure voltage between terminals PI and GND of cruise control ECU connector when main switch is ON and OFF. **OK:**

Switch position	Voltage		
OFF	10 – 16 V		
ON	Below 1.2 V		

ок \

Proceed to next circuit inspection shown in problem symptom table (See page DI–483).

Check and replace cruise control ECU (See page IN–32).

DI091-24

Diagnosis Circuit

CIRCUIT DESCRIPTION

This circuit sends a signal to the ECU that outputs DTC.

WIRING DIAGRAM

Actuator Control Cable

INSPECTION PROCEDURE

	1

Actuator control cable inspection

OK:

- (a) Check that the actuator and control cable throttle link are properly installed and that the cable and link are connected correctly.
- (b) Check that the actuator and bell crank operate smoothly.
- (c) Check that the cable is not loose or too tight.

OK:

Freeplay: less than 10 mm

HINT:

- If the control cable is very loose, the vehicle's loss of speed going uphill will be large.
- If the control cable is too tight, the idle RPM will become high.

DI092-09

DI-517

Electronically Controlled Transmission Communication Circuit

CIRCUIT DESCRIPTION

When driving uphill under the cruise control, in order to reduce shifting due to ON–OFF overdrive operation and to provide smooth driving, when down shifting in the electronically controlled transmission occurs, a signal to prevent upshift until the end of the uphill slope is sent from the cruise control ECU to the electronically controlled transmission.

Terminal ECT of the cruise control ECU detects the shift change signal (output to electronically controlled transmission No. 2 solenoid) from the engine and ECT ECU.

If the vehicle speeds down, also when terminal ECT of the cruise control ECU receives down shifting signal, it sends a signal from terminal OD to ECM to cut overdrive until the end of the uphill slope, and the gear shifts are reduced and gear shift points in the electronically controlled transmission are changed.

WIRING DIAGRAM

1

Check operation of overdrive.

PREPARATION:

Test drive after engine warms up.

CHECK:

Check that overdrive ON \leftrightarrow OFF occurs by operation of OD switch ON–OFF.

Check and repair electronically controlled transmission (See page DI–142).

2 Check voltage between terminal OD of harness side connector of cruise control ECU and body ground.

PREPARATION:

- (a) Remove the ECU with connector still connected.
- (b) Turn ignition switch ON.
- (c) Disconnect the ECU connector.

CHECK:

Measure voltage between terminal OD of harness side connector of ECU and body ground.

OK:

NG

Voltage: 10 – 14 V

Go to step 5.

ок

Check voltage between terminal ECT of cruise control ECU connector and body

3

ground (On test drive).

PREPARATION:

(a) Connect the ECU connector.

(b) Test drive after engine warms up.

CHECK:

Check voltage between terminal ECT of ECU connector and body ground when OD switch is ON and OFF.

OK:

OD switch position	Voltage	
ON	8 – 14 V	
OFF	Below 0.5 V	

⊙к

Г

/		Proceed	to	next	circuit	inspection	shown	in
/		problem	syr	npton	n table ((See page D	l–483).	

4 Check harness and connector between terminal ECT of cruise control ECU and electronically controlled transmission solenoid (See page IN–32).

NG

Repair or replace harness or connector.

OK

NG

Check and replace cruise control ECU.

5 Check harness and connector between terminal OD of cruise control ECU and terminal OD1 of engine and ECT ECU (See page IN–32).

Repair or replace harness or connector.

ΟK	
	_

Check and replace cruise control ECU (See page IN–32).

DI1A.I-23

ENGINE IMMOBILISER SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshooting in accordance with the procedure on the following pages.

CUSTOMER PROBLEM ANALYSIS CHECK

1

1

ENGINE IMMOBLISER Check Sheet

Inspector's . Name

Customer's Name	Registration No.			
	Registration Year	1	1	
	 Frame No.			

Odometer Reading

	_					
Date Problem First Occurred			1	1		
Frequency Problem Occurs		Continuous		Intermittent (times a day)	

Sumatoma	Immobiliser is not set. (Engine starts with key codes other than the registered key code,)
Symptoms	□ Engine does not start

DTC Check	1st Time	Normal Code	Malfunction Code (Code)
	2nd Time	Normal Code	Malfunction Code (Code)

km miles

Date Vehicle

Brought In

PRE-CHECK

1. DIAGNOSIS SYSTEM

(a) Description Engine & ECT ECU controls the function of immobiliser

on this vehicle. Data of the immobiliser or DTC can be read form DLC3 of the vehicle. When a trouble occurs on immobiliser, check engine warning light does not light on but DTC inspection is performed.

DI1AL-22

Therefore when there seems to be a trouble on immobiliser, use hand-held tester or SST to check and troubleshoot it.

(b) Inspect the DLC3.

The vehicle's engine & ECT ECU uses ISO 9141–2 for communication.

The terminal arrangement of DLC3 complies with SAEJ1962 and matches the ISO 9141–2 format.

Tester connection	condition	Specifiedcondition
7 (Bus \oplus Line) – 5 (Signal ground)	Duringcommunication	Pulsegeneration
4 (chassis Ground) – Body	Always	1 Ω or less
5 (Signal Ground) – Body	Always	1 Ω or less
16 (B+) – Body	Always	9 – 14 V

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of hand-held tester to DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

2. INSPECT DIAGNOSIS

- (a) Check the DTC (Using hand-held tester)
 - (1) Prepare the hand-held tester.
 - (2) Connect the hand-held tester to DLC3 under the instrument panel lower pad.
 - (3) Turn the ignition switch ON and turn the hand-held tester switch ON.
 - (4) Use the hand-held tester to check the DTCs and freeze frame data; note them down. (For operating instructions, see the OBD II scan tool's instruction book.)
 - (5) See page DI–525 to confirm the details of the DTCs.

- (b) Check the DTC (Using diagnosis check wire)
 - (1) Turn ignition switch ON.
 - (2) Using SST, connect between terminals 13 (TC) and 4 (CG) of DLC 1.
 - SST 09843-18040
 - (3) Read the diagnostic trouble code from check engine warning light.

HINT:

- If a diagnostic trouble code is not output, check the Tc terminal circuit.
- Engine & ECT ECU controls the immobiliser function on this vehicle, DTC is out put with engine data.

As an example, the blinking patterns for codes; normal, 12 and 99 are shown in the illustration.

LEXUS RX300 (RM785E)

DIAGNOSTICS - ENGINE IMMOBILISER SYSTEM

- (4) When DTC "99" is output, there is a trouble of immobiliser. Start troubleshooting referring to PROBLEM SYMPTOM TABLE.
- (5) After completing the check, disconnect terminals 13 (TC) and 4 (CG) and turn off the display.

HINT:

In the event of 2 or more malfunction codes, indication will begin from the smaller numbered code and continue in order to the larger.

(c) Clear the DTC.

The following actions will erase the DTCs and freeze frame data.

- (1) Operating the hand-held tester to erase the codes.
- (2) Disconnecting the battery terminals or EFI fuse.

DIAGNOSTIC TROUBLE CODE CHART

DTC No. (See page)	Detection Item	Trouble Area
B2795 (DI–529)	Unmatched key code	Key Unregistered key inserted before
B2796 (DI–530)	No communication in immobiliser system	• Key • Transponder key coil • Amplifier • Wirehaness • Engine & ECT ECU
B2797 (DI–533)	Communication malfunction No.1	Communication contests Unregistered key inserted before
B2798 (DI–535)	Communication malfunction No.2	 Key Transponeder key coil Amplifier Wirehaness Engine & ECT ECU

HINT:

To reduce the unnecessary exchange of engine & ECT ECU, check that a trouble occurs with the original engine & ECT ECU at the time of exchanging engine & ECT ECU and the trouble will disappear with a new engine & ECT ECU.

PARTS LOCATION

DI84X-01

TERMINALS OF ECU

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
TXCT – E1 (E10–18 ↔ E7–17)	$GR \leftrightarrow BR$	Ignition Switch ON	10 – 14
RXCK – E1 (E10–19↔E7–17)	$P \leftrightarrow BR$	Ignition Switch ON	10 – 14
KSW – E1 (E10–23 ↔ E7–17)	$L \leftrightarrow BR$	Ignition Switch ON	10 – 14
CODE – E1 (E10–28 ↔ E7–17)	$V \leftrightarrow BR$	Ignition Switch ON	10 – 14

Security indicator is OFF.

(When DTC of immobiliser is not output)

Security indicator is abnormal blinking.

DI1AP-23

IN-32

IN-32

IN-32

IN-32

PROBLEM SYMPTOMS TABLE

Symptom	Suspect Area	See page		
Immobiliser is not set. (Engine starts with key codes other than the registered key code.)	1. Engine & ECT ECU	IN-32		
Engine does not start.	1. Key 2. Wire harness 3. Transponder key coil 4. Amplifier 5. Engine & ECT ECU	*1 IN-32 BE-190 IN-32		
Security indicator is always ON.	 Security indicator Wire harness Engine & ECT ECU 	*2 IN–32 IN–32		
Security indicator is always ON. (Although code has been registered in the automatic registration mode, indicator is not OFF.)	1. Wire harness 2 Tranxponder key coil 3. Amplifier 4. Engine & ECT ECU	IN–32 BE–190 IN–32		
Security indicator is OFF (When DTC of immobiliser is output)	1. Wire harness 2 Tranxponder key coil 3. Amplifier	IN–32 BE–190		

*1 : Check that the key which did not start the engine has been registered and that it is possible to start with other already registered key codes.

4. Engine & ECT ECU

2. Engine & ECT ECU

1. Wire harness

1. Wire harness

*2 : Finish the automatic registration mode because the mode might still remain.

CIRCUIT INSPECTION

DTC	B2795/99	Unmatched Key Code

CIRCUIT DESCRIPTION

This DTC is output when an unregistered key is inserted. When this DTC is output, delete DTC and insert the key that a customer keeps to check that B2795 is output.

When a key that outputs B2795 is found, register this key. when B2795 is not output, there is a possibility that the unregistered key has been inserted before. (Engine & ECT ECU is normal.)

Inquire a customer the condition of using the system to find the cause of the trouble.

(Example: Another key has been inserted, etc..)

DTC No.	DTC Detecting Condition	Trouble Area
B2795/99	No communication	•Кеу

INSPECTION PROCEDURE

Delete DTC and insert all the presently available keys to check whether the engine starts or not.

HINT:

1

When inserting the key that does not start the engine, DTC (B 2795) is stored in memory.

OK All keys starts the engine. NG A specific key does not start the engine. OK No problem.

HINT:

If the result is "OK", please confirm whether or not customers have ever inserted the unregistered key or the immobiliser key (with transponder chip) of other vehicle in the ignition key cylinder, and find out the cause of detecting DTC.

NG

Register the key that does not start the engine.

DI1AT-24

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
B2796/99	Nocommunication	Key Transponder Key Coil Transponder Key Amplifier Wire harness Engine & ECT ECU

WIRING DIAGRAM

1	Delete DTC and insert all the presently available keys to check whether the en- gine starts or not
---	---

RESULT:

А	All keys start the engine.			
В	A specific key does not start the engine. In this case, DTC (B 2796) is stored in memory.			
С	All keys do not start the engine. In this case, DTC (B 2796) is stored in memory.			
A No problem at this time.				

HINT:

If the result is "A", please confirm whether or not customers have ever inserted the key (without transponder chip) of other vehicle in the ignition key cylinder, and find out the cause of detecting DTC.

The transponder chip of a specific key is defective. Replace the key.

4	Does it operate normally after replacement of transponder key amplifier?				
	Yes Replace transponder key amplifier.				
No					
Repla	ce engine and ECT ECU.				

DTC B2797/99 Communication Malfunction No.1

CIRCUIT DESCRIPTION

This code is detected when although the communication has been performed normally, an error occurs. (Example. Some noise is in cluded in communication line.)

DTC No.	DTC Detecting Condition	Trouble Area
B2797/99	Communicationerror	Wire Harness Transponder Key Amplifier Engine & ECT ECU

WIRING DIAGRAM

Replace engine & ECT ECU.

Communication malfunction No.2

DI1AV-16

CIRCUIT DESCRIPTION

B2798/99

DTC

DTC No.	DTC Detecting Condition	Trouble Area
B2798/99	Communicationerror	 Key Transponder Key Coil Transponder Key Amplifier Wire harness
		Engine & ECT ECU

WIRING DIAGRAM

1	Check transponder key coil (See page BE–190).			
	NG Replace transponder key coil			
ОК				
2	Check harness and connector between transponder key amplifier and engine & ECT ECU.			
	NG Repair or replace harness and connector			
ОК				
3	Does it operate normally after replacement of transponder key amplifier?			
	Yes Replace transponder key amplifier.			
No				
Rplac	e engine and ECT ECU.			

COMBINATION METER SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

DI1R8-04

HINT:

The ECU of this system is connected to the multiplex communication system. Therefore, before starting troubleshooting, make sure to check that there is no trouble in the multiplex communication system.

CUSTOMER PROBLEM ANALYSIS CHECK

COMBINATIO	N METER SYSTEM Check SI	heet Inspector's	s name:
		Registration No.	
Customer's Name		Registration Year Frame No.	
Date of Vehicle Brought In		Odometer Reading	km Mile

Date Problem First Occurred			/		1
Frequency Problem Occurs		 Constant Once only 	Sometin	nes (Time	s per day, month)
Weather Conditions	Weather	□ Fine□ Various/Otl	Cloudy Cloudy	🗌 Rain	y 🗌 Snowy
Occurred	Outdoor temperature	☐ Hot ☐ ☐ Cold (Appr	Warm	Cool °C))	

	Gauge	Speedometer does not operate or abnormal operation.
		Tachometer does not operate or abnormal operation.
		Fuel Gauge does not operate or abnormal operation.
		Engine Coolant Temperature Gauge does not operate or abnormal operation.
	Indicator Light and Warning Light	□ Shift indicator light does not light up.
		Open door warning light does not light up.
Problem Symptom		Driver seat belt warning does not light up.
		Low oil pressure warning light does not light up.
		Discharge warning does not light up.
		Brake warning light does not light up.
		Taillight indicator light does not light up.
		CRUISE MAIN indicator light does not light up.
		ECT SNOW indicator light does not light up.
		ECT PWR indicator light does not light up.
		TRAC OFF indicator light does not light up.
		Washer Level warning light does not light up.
		Rear Lights warning light does not light up.
		Others.
PROBLEM SYMPTOMS TABLE

GAUGE:

Symptom	Suspect Area	See page
Speedometer does not operate or abnormal operation.	1. Speedometer 2. Skid Control ECU	DI–541 –
Tachometer does not operate or abnormal operation.	1. Tachometer 2. Igniter Signal Circuit	DI–543 DI–547
Fuel Gauge does not operate or abnormal operation.	 Fuel Gauge Wire Harness Combination Meter 	DI-544 IN-32
Engine Coolant Temperature Gauge does not operate.	 Engine Coolant Temperature Gauge WIre Harness Combination Meter 	DI-546 IN-32

INDICATOR LIGHT AND WARNING LIGHT:

Symptom	Suspect Area	See page
Shift indicator lights does not light up.	 Bulb circuit A/T shift indicator light Transmission control switch 	DI–551 BE–62 DI–188
Open door warning light does not light up.	1. Bulb circuit 2. Door courtesy switch	DI–551 BE–48
Passenger seat belt warning light does not light up.	 Bulb circuit Passenger seat belt buckle switch 	DI–551 BE–48
Driver seat belt warning light does not light up.	 Bulb circuit Driver seat belt buckle switch 	DI–551 BE–48
Low oil pressure warning light does not light up.	 Bulb circuit Low oil pressure warning switch 	DI–551 BE–68
Discharge warning light does not light up.	1. Bulb circuit 2. Alternator	DI–551 CH–2
Brake warning light does not light up.	 Bulb circuit Parking brake switch Brake fluid level warning switch Combination meter 	DI–551 BE–68 BE–68 IN–32
Headlight indicator light does not light up. (USA models)	 Bulb circuit Headlight and Taillight System Combination meter 	DI–551 BE–2 IN–32
Taillight indicator light does not light up. (CANADA models)	 Bulb circuit Headlight and Taillight System Combination meter 	DI–551 BE–2 IN–32
CRUISE MAIN indicator light does not light up.	 Bulb circuit Cruise control switch Combination meter 	DI–551 DI–474 IN–32
ECT SNOW indicator light does not light up.	 Bulb circuit ECT pattern indicator signal Combination meter 	DI-551 - IN-32
ECT PWR indicator light does not light up.	 Bulb circuit ECT pattern indicator signal Combination meter 	DI-551 - IN-32
TRAC OFF indicator light does not light up.	1. Bulb circuit 2. Skid Control ECU 3. Combination meter	DI–551 DI–203 IN–32

DI1RA-06

DIAGNOSTICS – COMBINATION METER SYSTEM

Washer level warning light does not light up.	 Bulb circuit Window washer level warning switch Combination meter 	DI–551 BE–68 IN–32
Rear Lights warning light does not light up.	 Bulb circuit Light failure relay Combination meter 	DI–551 BE–68 IN–32
Engine oil level warning light does not light up.	 Bulb circuit Engine oil level warning sensor Combination meter 	DI–551 BE–68 IN–32
Any indicator lights does not light up.	 Bulb circuit Combination meter ECU power source circuit Combination meter 	DI–551 DI–549 IN–32

CIRCUIT INSPECTION

Speedometer

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, begin with STEP 2.

1 Perform active test.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

NG

NO

- (a) Enter into ACTIVE TEST function of hand-held tester.
- (b) Check that the probe moves as hand-held tester directs in each range.

OK:

The meter operates normally.

2 Is any of DTC 31 to 35 output from ABS system?

Check DTC on page DI-205.

3 Check for open or short circuit in harness and connector between A/C and combination meter integrated ECU and ABS & BA & TRC & VSC ECU.

DI-541

Tachometer

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, begin with STEP 2.

1

Perform active test.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into ACTIVE TEST function of hand-held tester.
- (b) Check that the probe moves as hand-held tester directs in each range.

OK:

The meter operates normally.

 NG

 2
 Check igniter signal circuit (See page DI-547).

 NG
 Check and repair igniter signal circuit.

 OK
 .

 3
 Check tachometer (See page BE-68).

 NG
 Replace tachometer.

 OK
 .

 OK
 .

DI1RC-04

Fuel gauge

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, begin with STEP 2.

1

Perform active test.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into ACTIVE TEST function of hand-held tester.
- (b) Check that the probe moves as hand-held tester directs in each range.

OK:

The gauge operates normally.

DI1RD-04

Engine Coolant Temperature Gauge

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, begin with STEP 2.

1

Perform active test.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into ACTIVE TEST function of hand-held tester.
- (b) Check that the probe moves as hand-held tester directs in each range.

OK:

The gauge operates normally.

DI1RE-04

NG

2

Is any of DTC P0115/22 or P0116/22 output from engin?

Check DTC on page DI-3.

Igniter Signal Circuit

INSPECTION PROCEDURE

When using hand-held tester:

-

Check tachometer value.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into DATALIST function of hand-held tester.
- (b) When driving the vehicle, check that patameter value of "Tachometer" changes on the screen of the hand-held tester.

NG

2 Check harness and connector between combination meter and Engine & ECT ECU (See page IN–32).

NG

Repair or replace harness or connector.

ОК

Check and repair ignition coil and wire harness.

When not using hand-held tester:

Combination Meter ECU Power Source Circuit

INSPECTION PROCEDURE

1	Check fuses. (HEATER and ECU–B fuse)		
	NG Replace fuse.		
ОК			
2	2 Check voltage between terminals +B and of combination meter connector and		

body ground.

NG

Check and repair harness and connector between combination meter and battery.

Bulb Circuit

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, begin with STEP 2.

1

Perform active test.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

(a) Enter into ACTIVE TEST function of hand-held tester.

(b) Check that light turns ON or OFF as the hand-held tester directs.

HINT:

All lights flush except shift indicator.

DI1RI-04

3 Check combination meter circuit plate (See page BE–68). NG Replace combination meter circuit plate. OK Replace A/C and combination meter integrated ECU.

SLIDING ROOF SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

The ECU of this system is connected to the multiplex communication system. Therefore, before starting troubleshooting, make sure to check that there is no trouble in the multiplex communication system.

CUSTOMER PROBLEM ANALYSIS CHECK

SLIDING ROOF CONTROL SYSTEM Check Sheet

Inspector's name:

		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date of Vehicle Brought in	1 1	Odometer Reading	km Mile

Date Problem First Occurred			/	/	
Frequency Problem Occurs		ConstantOnce only	☐ Sometimes (Times per	day, month)
Weather Conditions	Weather	□ Fine□ Various/Oth	□ Cloudy ners	□ Rainy	□ Snowy
When Problem Occurred	Outdoor temperature	☐ Hot ☐ ☐ Cold (Appre	Warm □ Coc ox. °F (°C)))	

Sliding roof operates abnormally or stops half way.	
ັັດ Jam protection system does not operate.	

DI1RL-03

PARTS LOCATION

TERMINALS OF ECU

104611

DI1RN-06

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
$\begin{array}{c} B \leftrightarrow E \\ (M6-5 \leftrightarrow M6-7) \end{array}$	$L–O\leftrightarrow W–B$	Always	10 – 14 V
$E \leftrightarrow Body ground$ (M6–7 $\leftrightarrow Body ground$)	W−B \leftrightarrow Body Ground	Always	10 – 14 V
$IG \leftrightarrow E$		Ignition switch ON	10 – 14 V
$(M6-8 \leftrightarrow M6-7)$		Ignition switch OFF or ACC	Below 1 V
$OPN \leftrightarrow E$		Sliding roof control switch OPEN	10 – 14 V
$(M6-9 \leftrightarrow M6-7)$	$P \leftrightarrow N P B$	Others	Below 1 V
$CLS \leftrightarrow E$		Sliding roof control switch CLOSE	10 – 14 V
$(M6-10 \leftrightarrow M6-7) \qquad \qquad$		Others	Below 1 V

DI1RO-03

DIAGNOSTICS - SLIDING ROOF SYSTEM

PROBLEM SYMPTOMS TABLE

Symptom	Suspect Area	See page
Sliding roof control system does not operate.	 Sliding Roof Gear Assembly with ECU Circuit Sliding Roof Control Switch Circuit 	DI–558 DI–560
Sliding roof operates abnormally or stops half way.	1. Sliding Roof Limit Switch Circuit	DI–562
Jam protection system does not operate.	1. Sliding Roof Gear Assembly with ECU Circuit	DI–558

DI1RP-06

CIRCUIT INSPECTION

Sliding Roof Gear Assembly with ECU Circuit

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, replace sliding roof drive gear assembly.

1	Perform active test.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into ACTIVE TEST function of hand-held tester.
- (b) Check that "Slide roof motor" operates as the hand-held tester directs.

OK:

The motor operates normally.

NOTICE:

Caution is necessary not to be caught in as the jam protection system does not operate during conducting ACTIVE TEST.

HINT:

With one ACTIVE direction, the sliding roof can be slidden and tilted continuously.

Proceed to next circuit inspection shown on problem symptom table (See page DI–557).

NG

Replace sliding roof drive gear assembly (See page IN-32).

DI1RQ-06

Sliding Roof Control Switch Circuit

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, begin with STEP 2.

Check sliding roof control switch operation.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into DATALIST function of hand-held tester.
- (b) Check that switch status (ON/OFF) changes on the screen of hand-held tester as the sliding roof control switch of the vehicle is turned.

OK:

The motor operates normally.

NG

Replace sliding roof gear assembly (See page DI–557).

¹

Proceed to next circuit inspection shown on problem symptom table (See page DI–557).

DI1RR-04

Sliding Roof Limit Switch Circuit

WIRING DIAGRAM

See page DI-558.

INSPECTION PROCEDURE

HINT:

If there is not the hand-held tester, begin with STEP 2.

4	Check aliding read control awitch energian (See nego. DI 500 on stan 1)
1	Check sliding root control switch operation (See page DI-560 on step 1).

Check sliding roof control switch circuit. (See page DI–560)

ОК

2 Check sliding roof limit switch operation.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into ACTIVE TEST function of hand-held tester.
- (b) Check that "Sliding Roof" operates as the hand-held tester directs.
- (c) At this time, check that status (ON/OFF) of limit switch No.1 and No.2 changes on the hand-held tester screen as shown in the illustration below.

NOTICE:

Caution is necessary not to be caught in as the jam protection system does not operate during conducting ACTIVE TEST.

OK:

Replace sliding roof gear assembly (See page DI–557).

OK

3

Check sliding roof motor status.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

- (a) Enter into ACTIVE TEST function of hand-held tester.
- (b) Check that "Sliding Roof" operates as the hand-held tester directs.
- (c) As this time, check that motor status changes on the screen of hand-held tester as the sliding roof switch of the vehicle is turned.

OK:

The motor operates normally.

ΟΚ

4 Check sliding roof glass alignment. (Mechanical malfunction) (See page BO–118).

Adjustment sliding roof (See page BO–118).

ΟΚ

Replace sliding roof gear assembly (See page DI–557).

DI10D-12

BODY CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

This ECU is connected to the multiplex communication system. Therefore, be sure to check that there is no troubles in the multiplex communication system before performing the trouble shooting.

hand-held tester .

CUSTOMER PROBLEM ANALYSIS CHECK

BODY CONTROL SYSTEM Check Sheet

Inspector's name:

		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date Vehicle Brought in	/ /	Odometer Reading	km Mile

Date Problem First Occurred		/ /
Frequency Problem Occurs		" " Constant " " Sometimes (times per day, month) " " Once only
Weather Conditions When Problem Occurred	Weather	" " Fine " " Cloudy " " Rainy " " Snowy " " Various/ Others
	Outdoor Temperature	" " Hot " " Warm " " Cool " " Cold (Approx. °F (°C))

	" " Key Reminder System	
	" " Headlight and Taillight System	
	" " Light Control System	
	" " Illuminated Entry System	
	" "Wiper and Washer System	
	" " Seat Belt Warning	
Malfunction System	" " Power Window Control System	
	" " Power Door Lock Control System	
	" " Theft Deterrent System	
	" " Wireless Door Lock Control System	
	" " Others	

DI1OE-04

PARTS LOCATION

DI10G-16 **TERMINALS OF ECU** Body ECU **B5 B7 B6 B**8 5 5]10] R Б, 4 10 1.7 10 1.7 11 G, 10 12 11 Э າກ ແລະ ເວັດຣ 21.20 19 10 17 17 10 10 10 17 12 14

107384

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
GND2 ↔ Body Ground (B8–2 ↔ Body Ground)	W–B	Constant	Below 1.0
$\begin{array}{l} BSUB\leftrightarrowGND\ 1,2\\ (B8-4\leftrightarrowB5-9,B8-2) \end{array}$	$L–B \leftrightarrow W–B$	Constant	10 – 14
$IG \leftrightarrow GND 1, 2$		Ignition switch ACC or OFF	Below 1.0
$(B8-5\leftrightarrowB5-9,B8-2)$	$R-L \leftrightarrow W-B$	Ignition switch ON	10-14
FFGO ↔ GND1, 2		Fog light switch OFF	10-14
(B8–6 ↔ B5–9, B8–2)		Fog light switch ON	Below 1.0
TRLY \leftrightarrow GND1, 2		Ignition switch ON, light control switch OFF	10-14
$(B8-7\leftrightarrowB5-9,B8-2)$	$G - VV \leftrightarrow VV - B$	Ignition switch ON, light control switch TAIL	Below 1.0
HAZ ↔ GND1, 2		Hazard warning switch OFF	10-14
$(B811\leftrightarrowB59,B82)$	$LG-B\leftrightarrowW-B$	Hazard warning switch ON	Below 1.0
RFOG ↔ GND1, 2		Rear fog light switch OFF	10 – 14
(B8–13 ↔ B5–9, B8–2)	$G-B \leftrightarrow W-B$	Rear fog ligh switch ON	Below 1.0
SNOW \leftrightarrow GND1, 2		Pattern select switch SNOW	Below 1.0
$(B8-15\leftrightarrow B5-9, B8-2) \qquad \qquad$		Pattern select switch except SNOW, Ignition switch ON	10 – 14
$IND \leftrightarrow GND1, 2$		Security indicator light lights up	3-6
$(B816 \leftrightarrow B59, B82)$	$LG \leftrightarrow VV-B$	Security indicator light does not light up	Below 1.0
ACC \leftrightarrow GND1, 2		Ignition switch OFF	Below 1.0
$(B818 \leftrightarrow B59, B82)$	$GR \leftrightarrow W-B$	Ignition switch ACC	10-14
BCTY \leftrightarrow GND1, 2		Back door courtesy switch OFF (closed)	10 – 14
(B7–5 ↔ B5–9, B8–2)	$VV-R\leftrightarrowVV-B$	Back door courtesy switch ON (open)	Below 1.0
DBKL \leftrightarrow GND1, 2		Driver's seat belt buckle switch OFF (belt fastened)	10 – 14
$(B7-7 \leftrightarrow B5-9, B8-2)$	$G-VV \leftrightarrow VV-B$	Driver's seat belt buckle switch ON (belt unfastened)	Below 1.0
KSW ↔ GND1, 2		Ignition key inserted	Below 1.0
(B7–8 ↔ B5–9, B8–2)	$L \leftrightarrow W-B$	Ignition key not inserted	10 - 14
$HR \leftrightarrow GND1, 2$		Ignition switch ON and blower motor not operate	10 - 14
(B7–9 ↔ B5–9, B8–2)	$L = O \leftrightarrow W = B$	Ignition switch ON and blower motor operate	Below 1.0
ILE \leftrightarrow GND1, 2		Each door open	Below 2.0
$(B7-10 \leftrightarrow B5-9, B8-2) \qquad \qquad R-Y \leftrightarrow W-B$		All door closed	10-14

DIAGNOSTICS – BODY CONTROL SYSTEM

	i		
RWLS ↔ GND1, 2		Ignition switch ON, rear wiper switch OFF, WASH1 or INT	10–14
$(B7-12 \leftrightarrow B5-9, B8-2)$	$K-L \leftrightarrow V-B$	Ignition switch ON, rear wiper switch ON or WASH2	Below 1.0
RWW \leftrightarrow GND1, 2		Ignition switch ON, rear wiper switch OFF, ON or INT	10-14
$(B7-13 \leftrightarrow B5-9, B8-2)$		Ignition switch ON, rear wiper switch WASH1 or 2	Below 1.0
$STP1 \leftrightarrow GND1, 2$		Stop light switch OFF	Below 1.0
$(B7-18\leftrightarrow B5-9, B8-2) \qquad \qquad G-O\leftrightarrow W-B$		Stop light switch ON	10–14
PKB ↔ GND1, 2		Ignition switch ON, PKB switch OFF	10–14
$(B7-19 \leftrightarrow B5-9, B8-2)$	$K-B\leftrightarrowVV-B$	Ignition switch ON, PKB switch ON	Below 1.0
$HF^{*1} \leftrightarrow GND1, 2$		Headlight dimmer switch LOW or HI	10-14
$(B7-20 \mathop{\leftrightarrow} B5-9, B8-2)$	$R \leftrightarrow VV-B$	Headlight dimmer switch FLASH	Below 1.0
RWC1 ↔ GND1, 2		Ignition switch ON, rear wiper switch except INT	10-14
$(B7-21 \leftrightarrow B5-9, B8-2)$	$K \leftrightarrow VV-B$	Ignition switch ON, rear wiper switch INT	Below 1.0
$A \leftrightarrow GND1, 2$		Light control switch except AUTO	10-14
$(B6-4\leftrightarrowB5-9,B8-2)$	$P \leftrightarrow M-R$	Light control switch except AUTO	Below 1.0
$HU^{*1} \leftrightarrow GND1, 2$		Headlight dimmer switch LOW	10 – 14
$(B6-5 \leftrightarrow B5-9, B8-2)$	$R-VV \leftrightarrow VV-B$	Headlight dimmer switch HI or FLASH	Below 1.0
FFOG ↔ GND1, 2		Headlight dimmer switch LOW, fog light switch OFF	10 – 14
$(B6-7 \leftrightarrow B5-9, B8-2)$	$G-Y \leftrightarrow VV-B$	Headlight dimmer switch LOW, fog light switch ON	Below 1.0
RFGO ↔ GND1, 2		Rear fog light OFF	10 – 14
$(B611\leftrightarrowB59,B82)$	$G - vv \leftrightarrow vv - B$	Rear fog light ON	Below 1.0
RDR+ ↔ GND1, 2		Back door lock motor is activated to lock	Below 1.0
(B5−1 ↔ B5−9, B8−2)	$L-B\leftrightarrowW-B$	Back door lock motor is not operated	10-14
BECU ↔ GND1, 2 (B5–2 ↔ B5–9, B8–2)	$G-B^{*1} \leftrightarrow W-B$ $W-L^{*2}$	Constant	10-14
RWLM ↔ GND1, 2		Rear wiper switch OFF	Below 1.0
(B5–3 ↔ B5–9, B8–2)	$L \leftrightarrow W-B$	Rear wiper switch ON, ignition switch ON	10 – 14
RWIG ↔ GND1, 2		Ignition switch OFF	Below 1.0
(B5–4 ↔ B5–9, B8–2)	$L-VV \leftrightarrow VV-B$	Ignition switch ON	10 – 14
$RDR-\leftrightarrow GND1, 2$		Back door lock motor is activated to unlock	Below 1.0
(B5–6 ↔ B5–9, B8–2)	$L-R \leftrightarrow W-B$	Back door lock motor is not operated	10 – 14
RWSW ↔ GND1, 2		Rear wiper operated	10 – 14
$(B5-7 \leftrightarrow B5-9, B8-2)$	$L=O \leftrightarrow W=B$	Rear wiper STOP	Below 1.0
WIG \leftrightarrow GND1, 2		Ignition switch OFF	Below 1.0
(B5–8 ↔ B5–9, B8–2)	$\Gamma - \Lambda \leftrightarrow \Lambda \Lambda - R$	Ignition switch ON	10-14
GND1 \leftrightarrow Body ground (B5–9 \leftrightarrow Body ground)	W–B	Constant	Below 1.0
$\text{DIM}^{*1} \leftrightarrow \text{GND1}, 2$	0.141.5	Headlight dimmer switch LOW	10-14
$(B5-10\leftrightarrowB5-9,B8-2)$	$G \leftrightarrow VV - B$	Headlight dimmer switch HI or FLASH	Below 1.0
HRLY \leftrightarrow GND1, 2		Light control switch OFF or TAIL	10 – 14
$(B5-12\leftrightarrowB5-9,B8-2)$	$R \leftrightarrow VV-B$	Light control switch HEAD	Below 1.0
$DRL^{*1} \leftrightarrow GND1, 2$		Engine running and PKB switch OFF	Below 1.0
$(B5-14\leftrightarrowB5-9,B8-2)$		Engine running and PKB switch ON or light control switch HEAD	10-14
$HEAD \leftrightarrow GND1,2$		Light control switch OFF or TAIL	10-14
(B5–15 ↔ B5–9, B8–2)	$K-L\leftrightarrowW-B$	Light control switch HEAD	Below 1.0
TAIL \leftrightarrow GND1, 2		Light control switch OFF	10-14
$(B5-16\leftrightarrowB5-9,B8-2)$	$G - K \leftrightarrow VV - B$	Light control switch TAIL or HEAD	Below 1.0

DIAGNOSTICS – BODY CONTROL SYSTEM

LSWA \leftrightarrow GND1, 2		Back door locked	10 – 14
(B5–17 ↔ B5–9, B8–2)	$GR \leftrightarrow VV-B$	Back door unlocked	Below 1.0

*1: LHD

*2: RHD

PROBLEM SYMPTOMS TABLE

Symptom	Suspect Area	Seepage
Lock or unlock cannot be operated with door lock control S/W.	1. Driver ECU (or passenger ECU) 2. Body ECU	-
Door key linked function does not operate.	1. Driver Door ECU (or Passenger Door ECU) 2. Body ECU	-
Key confinement prevention function does not operate.	1. Key unlock switch circuit 2. Body ECU	DI–590

WIRELESS DOOR LOCK CONTROL

Symptom	Suspect Area	See page
All function of wireless door lock control system do not operate.	 Transmitter Wireless tuner circuit Key unlock warning switch circuit Body ECU 	BE–116 DI–584 DI–590
Lock (or unlock) function does not operate.	 Door unlock detection switch circuit Any door ECU Body ECU 	DI-608 DI-630 DI-653 DI-670
Automatic lock function operates even if any door is opened within 30 seconds after all doors are unlocked by wireless door lock control system .	 Door courtesy switch circuit Any door ECU Body ECU 	DI612 DI634 DI655 DI672
Buzzer sound, but wireless door lock function does not operate.	1. Body ECU	

REAR WIPER AND WASHER

Symptom	Suspect Area	Seepage
	1. Wiper switch circuit	BE-56
Rear wiper does not operate.	2. Rear wiper motor circuit	BE56
	3. Body ECU	
	1. Washer switch circuit	BE-56
Rear washer does not operate.	2. Washer motor	BE–56
	3. Wire harness	

LIGHT CONTROL

Symptom	Suspect Area	See page
Automatic light control does not operate	 Light sensor circuit Headlight control switch circuit Body ECU 	DI–714 DI–575
Auto turn–off does not operate	 Door courtesy switch circuit (Driver side) Ignition switch Driver door ECU Body ECU 	DI–612 BE–26

DI1OH-09

DIAGNOSTICS – BODY CONTROL SYSTEM

OTHERS

Symptom	Suspect Area	See page
Does not operate the illuminated entry	1. Illumination circuit 2. Body ECU	DI–588
A/C panel and multi display does not deteriorate.	1. Rheostat light control circuit 2. Body ECU	BE-68

CIRCUIT INSPECTION

Power source circuit

CIRCUIT DESCRIPTION

This circuit provides power to operate the Body ECU.

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check RR WIPER, RADIO No.2, DOOR and GAUGE fuse.

CHECK:

Check continuity of RR WIPER, RADIO No. 2, DOOR and GAUGE fuse.

OK:

Continuity

ОК

2 Check voltage between terminals WIG, ACC, BSUB, BECU and IG and GND1 or GND2 of Body ECU connector.

PREPARATION:

Turn ignition switch ON.

CHECK:

Measure voltage between terminals WIG, ACC, IG, and GND1, GND2.

OK:

Voltage: 10 – 14V

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the Body ECU connector.

CHECK:

Measure voltage between terminals BSUB, BECU and GND1, GND2.

OK:

Voltage: 10 – 14V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–570).

NG

Light control switch circuit

WIRING DIAGRAM

DI1OL-14

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check headlight control switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the headlight control switch using DATA LIST.

OK:

Terminal (tester display) Switch position	Headlight switch (Tail)	Headlight switch (Head)	Auto light switch
OFF	OFF	OFF	OFF
TAIL	ON	OFF	OFF
HEAD	ON	ON	OFF
AUTO	OFF	OFF	ON

LEXUS RX300 (RM785E)

3	Check wireharness and connector between headlight control switch and Body ECU.
	NG Repair or replace wireharness or connector.
ОК	
Proce proble (See	eed to next circuit inspection shown on em symptoms table page DI–570).

DI1OM-05

Hazard switch circuit

CIRCUIT DESCRIPTION

Body ECU activates the flasher relay during warning of the theft deterrent system and flashers the hazard.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and incase of not using the hand-held tester, start from step 2.

Check hazard operation using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the hazard can operate in an ACTIVE TEST.

DI1ON-19

Taillight relay circuit

CIRCUIT DESCRIPTION

Taillight relay will be "ON" by operating the taillight switch. The transistor which activates the tail light relay has two sorts: one activates by the tail light switch for fail safe and the other activates by CPU.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check taillight relay using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

NG

Check that the taillight relay can operate in an ACTIVE TEST.

Proceed to next circuit inspection shown on problem symptoms table (See page DI–570).

Repair or replace wireharness or connector.

ОК

2 Check taillight relay (See page BE–31).

Replace the taillight relay.

3 Check wireharness and connector between taillight relay and Body ECU, battery and taillight relay.

NG

ок

Proceed to next circuit inspection shown on

problem symptoms table (See page DI–570).

DI100-12

Headlight relay circuit

CIRCUIT DESCRIPTION

Head light relay will be "ON" by operating the headlight switch. The transistor which activates the taillight relay has two sorts: one activates directly by the headlight switch for fail safe and the other activates by CPU. the one that activates by CPU has two systems and prevents the headlight from turning off at the time of one system trouble in the automatic operation circuit.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check headlight relay using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the headlight relay can operate in an ACTIVE TEST.

OK:

If the head light relay is normal, the head light comes "ON". In the case that the head light relay activates but the head light will not come on, check the head light circuit.

DI1OP-06

Wireless door lock tuner circuit

CIRCUIT DESCRIPTION

The signal from the transmitter will be input to the body ECU through RDA line. RDA line is diagnosed by the Body ECU, so check DTC also in case of the failure of the wireless function.

er.

DI1OT-05

Driver buckle switch circuit

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check driver buckle switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the driver buckle switch using DATA LIST.

DI1OW-10

Illumination circuit

CIRCUIT DESCRIPTION

Receiving the courtesy signal from either of the door ECU, the Body ECU will make the front interior light and ignition light, come on.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check illumination (interior light, ignition switch light) using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the illumination can light in an ACTIVE TEST.

OK:

All the illumination should light on.

DI1OX-12

Key unlock warning switch circuit

CIRCUIT DESCRIPTION

The key unlock warning switch goes on when the ignition key is inserted in the key cylinder and goes off when the ignition key is removed.

The ECU operates the key confinement prevention function while the key unlock warning switch is on.

1 Check key unlock warning switch (See page BE-26). NG Replace the key unlock warning switch. OK 2 Check wireharness and connector between key unlock warning switch and Body ECU. NG Repair or replace wireharness or connector.

Proceed to next circuit inspection shown on problem symptoms table (See page DI–570).

ΟΚ

DI1OZ-07

Rear interior light and back door courtesy switch circuit

CIRCUIT DESCRIPTION

The back door courtesy switch goes on when back door is opened and goes off when back door is closed.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and incase of not using the hand-held tester, start from step 2.

Check back door courtesy switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the back door courtesy switch using DATA LIST.

DI1P4-12

Stop light switch circuit

CIRCUIT DESCRIPTION

The Body ECU is detecting the condition of the stop light switch.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check stop light switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the stop light switch using DATA LIST.

Parking brake switch circuit

WIRING DIAGRAM

DI1P5-05

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check parking brake switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the parking brake switch using DATA LIST.

DI2BH-12

DRIVER DOOR CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

This ECU is connected to the multiplex communication system. Therefore, be sure to check that there is no troubles in the multiplex communication system before performing the troubleshooting.

hand-held tester.

CUSTOMER PROBLEM ANALYSIS CHECK

DRIVER DOOR CONTROL SYSTEM Check Sheet

Inspector's name:

		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date Vehicle Brought in	/ /	Odometer Reading	km Mile

Date Problem First Occurred		/ /
Frequency Problem Occurs		" " Constant " " Sometimes (times per day, month) " " Once only
Weather Conditions When Problem Occurred	Weather	" " Fine " " Cloudy " " Rainy " " Snowy " " Various/ Others
	Outdoor Temperature	" " Hot " " Warm " " Cool " " Cold (Approx. °F (°C))

Malfunction	" " Power Window Control System		
	" " Power Door Lock Control System		
System	" " Theft Deterrent System		
	" " Jam Protection System		
	" " Others		

DI2BJ-11

PARTS LOCATION

TERMINALS OF ECU

DRIVER DOOR ECU

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
UP ↔ GND		Ignition switch ON and driver's window switch OFF	Below 1.0
(D12–1 ↔ D12–25)	$R \leftrightarrow W - B$	Ignition switch ON and driver's window switch UP	10 – 14
$A-\leftrightarrow GND$	1	Door lock switch OFF or LOCK	Below 1.0
(D12–2↔D12–25)	$L-Y \leftrightarrow W-B$	Door lock switch UNLOCK	10-14
SIG \leftrightarrow GND (D12–5 \leftrightarrow D12–25)	$R-L \leftrightarrow W-B$	Ignition switch ON	10-14
$KL \leftrightarrow GND$		Door key lock and unlock switch OFF or UNLOCK	10-14
(D12–6 ↔ D12–25)	$P \leftrightarrow NN - B$	Door key lock and unlock switch LOCK	Below 1.0
$LMT \leftrightarrow SGND$		Driver's door window fully-closed position	10 – 14
(D12–8 ↔ D12–12)	$LG \leftrightarrow LG-R$	Driver's door window except fully-closed position	Below 1.0
$A+\leftrightarrow GND$		Door lock switch OFF or UNLOCK	Below 1.0
$(D12-13 \leftrightarrow D12-25) \qquad \qquad L-R \leftrightarrow W-B$		Door lock witch LOCK	10 – 14
BDR \leftrightarrow GND (D12–14 \leftrightarrow D12–25)	$L-B \leftrightarrow W-B$	Constant	10 – 14
$DN \leftrightarrow GND$	0.1415	Ignition switch ON and driver's window switch OFF	Below 1.0
(D12–15↔D12–25)	$G \leftrightarrow W - B$	Ignition switch ON and driver's window switch DOWN	10-14
$LSW \leftrightarrow GND$		Driver's door is locked	10 – 14
$(D12–16 \leftrightarrow D12–25)$	$GR \leftrightarrow W-B$	Driver's door is unlocked	Below 1.0
$CTY \leftrightarrow GND$		Driver's door is closed	10 – 14
$(D1217 \leftrightarrow D1225)$	$R-VV \leftrightarrow VV-B$	Driver's door is open	Below 1.0
CPUB ↔ GND (D12–18 ↔ D12–25)	$\begin{array}{c} G-B \stackrel{*1}{\longrightarrow} W-B \\ W-L \stackrel{*2}{\longrightarrow} \end{array}$	Constant	10 – 14
KUL ↔ GND		Door key lock and unlock switch OFF or LOCK	10-14
(D12–19↔D12–25)	$P-L \leftrightarrow GR-R$	Door key lock and unlock switch UNLOCK	Below 1.0
	$LG-B \leftrightarrow W-B$	During the driver's door power window is operate.	Pulsegeneration
$PLS \leftrightarrow SGND$		Driver's door power window not operate with switch ON	Below 1.0
		Driver's door power window not operate with switch OFF	10 – 14
CTYB ↔ CYL		Driver's door closed	Below 1.0
(D12–21 ↔ D12–4)	$L-B \leftrightarrow G-W$	Driver's door open	10-14

*: Power window master switch

*1: LHD *2: RHD LEXUS RX300 (RM785E) DI2BK-12

DIAGNOSTICS – DRIVER DOOR CONTROL SYSTEM

PROBLEM SYMPTOMS TABLE POWER WINDOW CONTROL SYSTEM

Symptom	Suspect Area	See page
All the power windows does not operate.	1. Driver door ECU with master switch	_
Power window does not operate.	1. Driver door ECU with master switch	-
Auto up (or down) function does not operate.	1. Driver door ECU with master switch	-
Jam protection function and auto up (or down) function does not operate.	 Jam protection limit switch circuit Jam protection pulse switch circuit Driver door ECU with master switch 	DI–616 DI–618 –

OTHERS

Symptom	Suspect Area	See page
Parts of the door does not function.	 Power source circuit Driver door ECU with master switch 	DI-603

DI2BL-03

CIRCUIT INSPECTION

Power source circuit

CIRCUIT DESCRIPTION

This circuit provides power to operate the driver door ECU.

WIRING DIAGRAM

DI2BM-13

1

Check ECU–B, GAUGE and FR DOOR fuse.

CHECK:

Check continuity of ECU–B,GAUGE and FR DOOR fuse.

OK:

Continuity

OK

PREPARATION:

Turn ignition switch ON.

CHECK:

Measure voltage between terminals SIG, and GND.

OK:

Voltage: 10 – 14V

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the driver door ECU connector.

CHECK:

Measure voltage between terminals BDR, CPUB and GND.

OK:

Voltage: 10 – 14V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–602).

NG

DI2BO-06

Door lock motor circuit

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check door lock motor using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the door lock motor can operate in an ACTIVE TEST.

DI2BP-10

Door unlock detection switch circuit

CIRCUIT DESCRIPTION

The door unlock detection switch is built in the door lock motor assembly. This switch is ON when the door lock knob is in the unlock position and OFF when the lock knob is in the lock position. The ECU detects the door lock knob conditions is this circuit. It is used as one of the operating conditions for the key confinement prevention function.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check door unlock detection switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the door unlock detection switch using DATA LIST.

Proceed to next circuit inspection shown on problem symptom table (See page DI–570).

DI2BQ-10

Door key lock and unlock switch circuit

CIRCUIT DESCRIPTION

The door key lock and unlock switch is built in the door key cylinder. When the key is turned to the lock side, terminal 3 of the switch is grounded and when the key is turned to the unlock side, terminal 2 of the switch is grounded.

Door key lock and unlock switch can be checked using DTC check. (Refer to DI-708)

DI2BR-12

Door courtesy light and courtesy switch circuit

CIRCUIT DESCRIPTION

The door courtesy switch goes on when the door is opened and goes off when door is closed.

1

Check operation of door courtesy light.

CHECK:

Check that door courtesy light comes on when door opened, and goes off when door is closed.

OK:

Must be operated normally.

DI2BS-12

Power window motor circuit

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check power window motor using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the power window motor can operate in an ACTIVE TEST.

problem symptoms table (See page DI–602).

DI2BT-11

Jam protection limit switch circuit

CIRCUIT DESCRIPTION

Jam protection limit switch is built–in the power window motor. This switch functions to turn "OFF" before the top dead center, and ECU reads this "OFF" signal resulting in closing the window fully.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check jam protection limit switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the jam protection limit switch using DATA LIST.

DI2BU-11

Jam protection pulse switch circuit

CIRCUIT DESCRIPTION

Jam protection pulse switch is built-in the power window motor. Pulse switch outputs ON/OFF pulse when the motor rotates.

1	Check jam protection pulse switch (See page BE–84).
	NG Replace the power window motor.
ОК	
2	Check wireharness and connector between jam protection pulse switch and driver door ECU.
	NG Repair or replace wireharness or connector.
ОК	

Proceed to next circuit inspection shown on problem symptoms table (See page DI–602).

DI2ES-08

PASSENGER DOOR CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

This ECU is connected to the multiplex communication system. Therefore, be sure to check that there is no troubles in the multiplex communication system before performing the troubleshooting.

hand-held tester.

CUSTOMER PROBLEM ANALYSIS CHECK

PASSENGER DOOR CONTROL SYSTEM Check Sheet

		Inspector's	s name:
		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date Vehicle Brought in	/ /	Odometer Reading	km Mile

Date Problem First Occurred		/ /
Frequency Problem Occurs		" " Constant " " Sometimes (times per day, month) " " Once only
Weather Conditions	Weather	" " Fine " " Cloudy " " Rainy " " Snowy " " Various/ Others
Occurred	Outdoor Temperature	" " Hot " " Warm " " Cool " " Cold (Approx. °F (°C))

	" " Power Window Control System
	" " Power Mirror Control System
Malfunction	" " Power Door Lock Control System
System	" " Theft Deterrent System
	" " Jam Protection System
	" " Others

DI2FS-09

PARTS LOCATION

DI2EV-10

TERMINALS OF ECU

PASSENGER DOOR ECU

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
$UP\leftrightarrowGND$		Ignition switch ON and driver's window switch OFF	Below 1.0
$(F17-1 \leftrightarrow F17-25)$	$R \leftrightarrow W - B$	Ignition switch ON and driver's window switch UP	10-14
$A-\leftrightarrow GND$		Door lock switch OFF or LOCK	Below 1.0
$(F17-2 \leftrightarrow F17-25)$	$\Gamma - \Lambda \leftrightarrow \Lambda \Lambda - B$	Door lock switch UNLOCK	10-14
$SIG \leftrightarrow GND (F17-5 \leftrightarrow F17-25)$	$R-L \leftrightarrow W-B$	Ignition switch ON	10 – 14
$KL \leftrightarrow GND$		Door key lock and unlock switch OFF or UNLOCK	10-14
$(F17-6 \leftrightarrow F17-25)$	$P \leftrightarrow W - B$	Door key lock and unlock switch LOCK	Below 1.0
$LMT \leftrightarrow SGND$		Driver's door window fully-closed position	10-14
$(F17-8 \leftrightarrow F17-12)$	$LG \leftrightarrow LG-R$	Driver's door window except fully-closed position	Below 1.0
$A+\leftrightarrow GND$		Door lock switch OFF or UNLOCK	Below 1.0
(F17–13↔F17–25)	$L-R\leftrightarrowVV-B$	Door lock witch LOCK	10-14
BDR ↔ GND (F17–14 ↔ F17–25)	$L-B \leftrightarrow W-B$	Constant	10 – 14
$DN\leftrightarrowGND$	$G \leftrightarrow W\text{-}B$	Ignition switch ON and driver's window switch OFF	Below 1.0
(F17–15↔F17–25)		Ignition switch ON and driver's window switch DOWN	10-14
$LSW \leftrightarrow GND$	$GR \leftrightarrow W-B$	Driver's door is locked	10 - 14
(F17–16↔F17–25)		Driver's door is unlocked	Below 1.0
$CTY \leftrightarrow GND$	$R-W \leftrightarrow W-B$	Driver's door is closed	10-14
(F17–17↔F17–25)		Driver's door is open	Below 1.0
CPUB \leftrightarrow GND (F17–18 \leftrightarrow F17–25)	$W-L \leftrightarrow W-B$	Constant	10 – 14
$KUL \leftrightarrow GND$		Door key lock and unlock switch OFF or LOCK	10-14
(F17–19↔F17–25)	$P-T \leftrightarrow M-R$	Door key lock and unlock switch UNLOCK	Below 1.0
		During the driver's door power window is operate.	Pulsegeneration
$PLS \leftrightarrow SGND$	$LG-B \leftrightarrow LG-R$	Driver's door power window not operate with switch ON	Below 1.0
		Driver's door power window not operate with switch OFF	10-14
CTYB ↔ CYL		Driver's door closed	Below 1.0
$(F17-21 \leftrightarrow F17-4)$	$\Box \to G \to M$	Driver's door open	10-14

PROBLEM SYMPTOMS TABLE POWER WINDOW CONTROL SYSTEM

Symptom	Suspect Area	See page
Power window does not operate.	1. Passenger door ECU with power window switch	-
Auto up (or down) function does not operate.	1. Passenger door ECU with power window switch	-
Jam protection function and auto up (or down) function does not operate.	 Jam protection limit switch circuit Jam protection pulse switch circuit Passenger door ECU with power window switch 	DI–638 DI–640 –

OTHERS

Symptom	Suspect Area	See page
Parts of the door does not function.	1. Power source circuit 2. Passenger door ECU	DI-625

DI2EW-03

CIRCUIT INSPECTION

Power source circuit

CIRCUIT DESCRIPTION

This circuit provides power to operate the passenger door ECU.

1

Check ECU–B, GAUGE and P FR DOOR fuse.

CHECK:

Check continuity of ECU–B,GAUGE and P FR DOOR fuse.

OK:

Continuity

OK

PREPARATION:

Turn ignition switch ON.

CHECK:

Measure voltage between terminals SIG, and GND.

OK:

Voltage: 10 – 14V

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the passenger door ECU connector.

CHECK:

Measure voltage between terminals BDR, CPUB and GND.

OK:

Voltage: 10 – 14V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–624).

NG

DI2EZ-06

Door lock motor circuit

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check door lock motor using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the door lock motor can operate in an ACTIVE TEST.

DI2F0-08

Door unlock detection switch

CIRCUIT DESCRIPTION

The door unlock detection switch is built in the door lock motor assembly. This switch is ON when the door lock knob is in the unlock position and OFF when the lock knob is in the lock position. The ECU detects the door lock knob conditions is this circuit. It is used as one of the operating conditions for the key confinement prevention function.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check door unlock detection switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

NG

Check the door unlock detection switch using DATA LIST.

Proceed to next circuit inspection shown on problem symptoms table (See page DI–570).

2	Check door unlock detection switch (See page BE–97).
---	--

Replace the door lock motor.

OK

3 Check wireharness and connector between door unlock detection switch an passenger door ECU.	d
---	---

 \rangle Repair or replace wireharness or connector.

ОК

Proceed to next circuit inspection shown on problem symptoms table (See page DI–570).

DI2F1-07

Door key lock and unlock switch circuit

CIRCUIT DESCRIPTION

The door key lock and unlock switch is built in the door key cylinder. When the key is turned to the lock side, terminal 3 of the switch is grounded and when the key is turned to the unlock side, terminal 2 of the switch is grounded.

Door key lock and unlock switch can be checked using DTC check. (Refer to DI-708)

DI2F2-09

Door courtesy light and courtesy switch circuit

CIRCUIT DESCRIPTION

The door courtesy switch goes on when the door is opened and goes off when door is closed.

1	

Check operation of door courtesy light.

CHECK:

Check that door courtesy light comes on when door opened, and goes off when door is closed.

OK:

Must be operated normally.

DI2F4-09

Power window motor circuit

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check power window motor using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the power window motor can operate in an ACTIVE TEST.

DI2F5-06

Jam protection limit switch circuit

CIRCUIT DESCRIPTION

Jam protection limit switch is built–in the power window motor. This switch functions to turn "OFF" before the top dead center, and ECU reads this "OFF" signal resulting in closing the window fully.

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check jam protection limit switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check the jam protection limit switch using DATA LIST.

DI2F6-06

Jam protection pulse switch circuit

CIRCUIT DESCRIPTION

Jam protection pulse switch is built-in the power window motor. Pulse switch outputs ON/OFF pulse when the motor rotates.

 1
 Check jam protection pulse switch (See page BE–84).

 NG
 Replace the power window motor.

 OK
 OK

 2
 Check wireharness and connector between jam protection pulse switch and passenger door ECU.

 NG
 Repair or replace wireharness or connector.

Proceed to next circuit inspection shown on problems symptoms table (See page DI–624).

ΟΚ

DI2E9-07

REAR LEFT DOOR CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

This ECU is connected to the multiplex communication system. Therefore, be sure to check that there is no troubles in the multiplex communication system before performing the troubleshooting.

CUSTOMER PROBLEM ANALYSIS CHECK

REAR LEFT DOOR CONTROL SYSTEM Check Sheet

Inspector's name:

		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date Vehicle Brought in	/ /	Odometer Reading	km Mile

Date Problem First Occurred		/ /
Frequency Problem Occurs		" " Constant " " Sometimes (times per day, month) " " Once only
Weather Conditions	Weather	" " Fine " " Cloudy " " Rainy " " Snowy " " Various/ Others
Occurred	Outdoor Temperature	" " Hot " " Warm " " Cool " " Cold (Approx. °F (°C))

Malfunction System	" " Power Window Control System		
	" " Power Door Lock Control System		
	" " Theft Deterrent System		
	" " Jam Protection System		
	" " Others		

DI2FB-03

PARTS LOCATION

TERMINALS OF ECU

REAR LEFT DOOR ECU

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
A- ↔ GND (R14-1 ↔ R14-25)	$LB\leftrightarrowWB$	Door lock switch OFF or LOCK	Below 1.0
		Door lock switch UNLOCK	10 – 14
$CTY \leftrightarrow GND$ (R14-8 \leftrightarrow R14-25)	$R-W \leftrightarrow W-B$	Rear LH door closed	10-14
		Rear LH door open	Below 1.0
SIG \leftrightarrow GND (R14–9 \leftrightarrow R14–25)	$R-L \leftrightarrow W-B$	Constant	10 – 14
PCTO \leftrightarrow GND (R14–10 \leftrightarrow R14–25)	$L-O \leftrightarrow W-B$	Window lock switch UNLOCK*	10-14
		Window lock switch LOCK*	Below 1.0
PCTI \leftrightarrow GND (R14–11 \leftrightarrow R14–25)	$Y – B \leftrightarrow W – B$	Window lock switch UNLOCK*	10 – 14
		Window lock switch LOCK*	Below 1.0
A+ ↔ GND (R14–13 ↔ R14–25)	$L-R \leftrightarrow W-B$	Door lock switch OFF or UNLOCK	Below 1.0
		Door lock switch LOCK	10-14
BDR ↔ GND (R14–14 ↔ R14–25)	$L-Y \leftrightarrow W-B$	Constant	10 – 14
CPUB ↔ GND (R14–15 ↔ R14–25)	$G-B \leftrightarrow W-B$	Constant	10 – 14
$LSW \leftrightarrow GND$	$GR\leftrightarrowW-B$	Rear LH door is locked	10 – 14
(R14–17↔R14–25)		Rear LH door is unlocked	Below 1.0
AUTO ↔ GND (R14–22 ↔ R14–25)	$Y \leftrightarrow W\text{-}B$	Ignition switch ON and power window switch OFF, UP or DOWN	Below 1.0
		Ignition switch ON and power window switch AUTO UP or DOWN	10 – 14
$ \begin{array}{l} MDN\leftrightarrowGND \\ (R14-23\leftrightarrowR14-25) \end{array} $	$Y-R \leftrightarrow W-B$	Ignition switch ON and power window switch OFF or UP	Below 1.0
		Ignition switch ON and power window switch DOWN	10-14
$\begin{array}{l} MUP\leftrightarrowGND\\ (R14-24\leftrightarrowR14-25) \end{array}$	$Y\text{-}G\leftrightarrowW\text{-}B$	Ignition switch ON and power window switch OFF or DOWN	Below 1.0
		Ignition switch ON and power window switch UP	10-14
$DN \leftrightarrow GND$	$G \leftrightarrow WB$	Ignition switch ON and power window switch OFF or UP	Below 1.0
(R15–1 ↔ R14–25)		Ignition switch ON and power window switch DOWN	10 – 14
$LMT \leftrightarrow GND$	$Y \leftrightarrow WB$	Window fully – close position	10-14
(R15–2 ↔ R14–25)		Window except fully – close position	Below 1.0

DIAGNOSTICS – REAR LEFT DOOR CONTROL SYSTEM

$UP \leftrightarrow GND$	$R \leftrightarrow W\text{-}B$	Ignition switch ON and power window switch OFF or DOWN	Below 1.0
(R15–3↔R14–25)		Ignition switch ON and power window switch UP	10 – 14
PLS ↔ GND (R15–7 ↔ R14–25)	L ↔ W–B	During power window is operate.	Pulsegeneration
		Power window is not operate with switch ON	Below 1.0
		Power window is not operate with switch OFF	10 – 14

*: Power window master switch
PROBLEM SYMPTOMS TABLE POWER WINDOW CONTROL SYSTEM

Symptom	Suspect Area	See page
Power window does not operate.	 Power window switch circuit Power window motor circuit Rear left door ECU 	DI–657 BE–84
Auto up (or down) function does not operate.	1. Power window switch circuit 2. Rear left door ECU	DI-657
Jam protection function and auto up (or down) function does not operate.	 Jam protection limit switch circuit Jam protection pulse switch circuit Rear left door ECU 	BE–84 BE–84

OTHERS

Symptom	Suspect Area	See page
Parts of the door does not function.	 Power source circuit Rear left door ECU. 	DI-648

CIRCUIT INSPECTION

Power source circuit

CIRCUIT DESCRIPTION

This circuit provides power to operate the rear left door ECU.

WIRING DIAGRAM

1

Check ECU–B, GAUGE and D RR DOOR fuse.

CHECK:

Check continuity of ECU–B,GAUGE and D RR DDOR fuse.

OK:

Continuity

OK

PREPARATION:

Turn ignition switch ON.

CHECK:

Measure voltage between terminals SIG, and GND.

OK:

Voltage: 10 – 14V

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the rear left door ECU connector.

CHECK:

Measure voltage between terminals BDR, CPUB and GND.

OK:

Voltage: 10 – 14V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–647).

NG

Door lock motor circuit

WIRING DIAGRAM

DI2FD-06

1	Check door lock motor (See page BE–97).
	NG Replace the door lock motor.
ОК	
2	Check wireharness and connector between door lock motor and rear left door ECU.
	NG Repair or replace wireharness or connector.
ОК	
Proce proble (See	eed to next circuit inspection shown on em symptoms table page DI–570).

Door unlock detection switch

CIRCUIT DESCRIPTION

The door unlock detection switch is built in the door lock motor assembly. This switch is ON when the door lock knob is in the unlock position and OFF when the lock knob is in the lock position. The ECU detects the door lock knob conditions is this circuit. It is used as one of the operating conditions for the key confinement prevention function.

WIRING DIAGRAM

DI2FE-06

1	Check door unlock detection switch (See page BE–97).
	NG Replace the door lock motor.
ОК	
2	Check wireharness and connector between door unlock detection switch and rear left door ECU.
	NG Repair or replace wireharness or connector.
ОК	

Proceed to next circuit inspection shown on problems symptoms table (See page DI–570).

Door courtesy switch circuit

CIRCUIT DESCRIPTION

The door courtesy switch turns on when the door is opened and turns off when door is closed.

WIRING DIAGRAM

DI2FF-06

1	Check door courtesy switch (See page BE–48).		
	NG Replace the courtesy switch.		
ОК			
2	Check wireharness and connector between courtesy light and rear left door ECU, courtesy switch and rear left door ECU.		
	NG Repair or replace wireharness or connector.		
ОК			

Proceed to next circuit inspection shown on problem symptoms table (See page DI–570).

Power window switch circuit

CIRCUIT DESCRIPTION

Power window switch circuit can be checked using DTC check. (Refer to DI-708)

WIRING DIAGRAM

DI2FG-06

INSPECTION PROCEDURE 1 Check the power window switch circuit using DTC check (See page DI–708). OK Proceed to next circuit inspection shown on problem symptoms table (See page DI-647). OK 2 Check the power window switch (See page BE-84). NG Replace the power window switch. OK 3 Check wireharness and connector between power window switch and rear left door ECU. NG Repair or replace wireharness or connector. OK Check wireharness and connector between power window switch and power 4 window master switch. NG Repair or replace wireharness or connector. OK Proceed to next circuit inspection shown on problem symptoms table (See page DI-647).